论文标题

通过遗传学矩阵的一致性同时对角线:一些等效条件和数值解决方案

Simultaneous diagonalization via congruence of Hermitian matrices: some equivalent conditions and a numerical solution

论文作者

Le, T. H., Nguyen, T. N.

论文摘要

本文旨在解决Hermitian SDC问题,即\ textit {同时通过$*$ - 一致性对角度化},这是有限的许多(不需要成对通勤)遗产矩阵的集合。从理论上讲,我们提供了一些等效条件,因为可以通过$^*$ - 一致性同时对这种矩阵集合进行对角线。%通过非词组矩阵。有趣的是,这样的条件之一导致对半决赛(SDP)的积极确定解决方案。从实际的角度来看,我们提出了一种用于解决此类问题的算法。提出的算法是 (1)一个积极的半决赛计划,检测最初的遗产矩阵是否可以通过$*$ - 一致性同时对角线,并且 (2)一种类似雅各比的算法,用于通过$*$同时对角线化的算法 - 一致性的通勤正常矩阵从上一个阶段得出。还提供了用手/编码的示例\ textsc {matlab}中的示例。

This paper aims at solving the Hermitian SDC problem, i.e., that of \textit{simultaneously diagonalizing via $*$-congruence} a collection of finitely many (not need pairwise commute) Hermitian matrices. Theoretically, we provide some equivalent conditions for that such a matrix collection can be simultaneously diagonalized via $^*$-congruence.% by a nonsingular matrix. Interestingly, one of such conditions leads to the existence of a positive definite solution to a semidefinite program (SDP). From practical point of view, we propose an algorithm for numerically solving such problem. The proposed algorithm is a combination of (1) a positive semidefinite program detecting whether the initial Hermitian matrices are simultaneously diagonalizable via $*$-congruence, and (2) a Jacobi-like algorithm for simultaneously diagonalizing via $*$-congruence the commuting normal matrices derived from the previous stage. Illustrating examples by hand/coding in \textsc{Matlab} are also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源