论文标题

量化非晶硅中的模态热导率

Quantifying Modal Thermal Conductivity in Amorphous Silicon

论文作者

Zhou, Yanguang

论文摘要

虽然有几种方法,例如Anharmonic晶格动力学和正常模式分解,以计算完美晶体中的模态晶格振动信息,但振动的模态信息,例如,振动放松时间,组速度和平均自由路径,在无用的固体中仍然是捕获的挑战。通过系统地分析正常模式分解和结构因子方法,我们得出结论,可以通过在结构因子方法中应用有效的波矢来计算振动分散体,而通过正常模式分解方法计算出的振动弛豫时间是值得怀疑的,因为无法在伽马点上定义组速度。我们还表明,由系统温度引起的非谐度对无定形材料中传播模式的松弛时间几乎没有影响,因此,当假定所有振动都被激发时,相应的模态和总热导率是独立的。非传播模式,即扩散子,通过不同振动模式之间的热耦合进行热量,并且可以使用Allen-Feldman理论通过谐波晶格动力学计算。结果,当激活所有振动模式时,源自扩散剂的热导率也与温度无关,这是分子动力学模拟的情况。关于宣传(50%)和二甲虫(50%)的总热导率与使用绿色kubo平衡分子动力学计算的结果非常吻合。通过纠正非晶固体振动的激发状态,通过结构因子方法和艾伦 - 费尔德曼理论计算得出的热导率可以完全捕获实验测量的温度依赖性导热率。

While there are several methods, e.g., anharmonic lattice dynamics and normal mode decomposition, to compute the modal lattice vibrational information in perfect crystals, the modal information of vibrations, e.g., vibrational relaxation time, group velocity and mean free path, in amorphous solids are still challenge to be captured. By systematically analyzing the normal mode decomposition and structure factor methods, we conclude that the vibrational dispersion can be calculated by applying effective wave vectors in the structure factor method, while the vibrational relaxation time calculated by the normal mode decomposition method is questionable since the group velocity cannot be defined on the Gamma point. We also show that the anharmonicity caused by the system temperature has little effect on the relaxation times of the propagating modes in amorphous materials, and therefore, the corresponding modal and total thermal conductivity is temperature independent when all the vibrations are assumed to be excited. The non-propagating modes, i.e., diffusons, conduct heat via thermal coupling between different vibrational modes, and can be calculated by harmonic lattice dynamics using Allen-Feldman theory. As a result, the thermal conductivity contributed from diffusons is also temperature independent when all the vibrational modes are activated which is the situation in molecular dynamics simulations. The total thermal conductivity concerning both propagons (50%) and diffusons (50%) agree quite well with the results computed using Green-Kubo equilibrium molecular dynamics. By correcting the excitation state of the vibrations in amorphous solids, the thermal conductivity calculated by the structure factor method and Allen-Feldman theory can fully capture the experimentally measured temperature-dependent thermal conductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源