论文标题
$ u_q(c_n^{(1)}),u_q(c^{(2)}(n+1))$和$ u_q(b^{(b^{(1)}(0,n))$,更高级别$ q $ -soscillator表示形式,u_n^{(1)}),u_q(c^{(2)}(n+1))$
Higher level $q$-oscillator representations for $U_q(C_n^{(1)}),U_q(C^{(2)}(n+1))$ and $U_q(B^{(1)}(0,n))$
论文作者
论文摘要
我们介绍了更高级别的$ q $ - 振荡器表示,用于量子仿射(超级)代数$ c_n^{(1)},c^{(2)}(n+1)$和$ b^{(1)}(1)}(0,n)$。这些表示是通过将融合程序应用于通过四面体方程的研究获得的一级$ Q $示波器表示形式来构建的。我们证明,这些较高级别的$ Q $ oscillter表示不可约。对于类型$ c_n^{(1)} $和$ c^{(2)}(n+1)$,我们根据schur多项式明确计算其字符。
We introduce higher level $q$-oscillator representations for the quantum affine (super)algebras of type $C_n^{(1)},C^{(2)}(n+1)$ and $B^{(1)}(0,n)$. These representations are constructed by applying the fusion procedure to the level one $q$-oscillator representations which were obtained through the studies of the tetrahedron equation. We prove that these higher level $q$-oscillator representations are irreducible. For type $C_n^{(1)}$ and $C^{(2)}(n+1)$, we compute their characters explicitly in terms of Schur polynomials.