论文标题

具有逼真的热力学的原星盘中的间隙和环:平面辐射传输的关键作用

Gaps and Rings in Protoplanetary Disks with Realistic Thermodynamics: The Critical Role of In-Plane Radiation Transport

论文作者

Miranda, Ryan, Rafikov, Roman R.

论文摘要

许多原始磁盘在灰尘发射中表现出环形差距,这可能是由行星产生的。旨在解释这些观察结果的行星磁盘相互作用的模拟通常以过度简化的方式处理磁盘热力学,这无法正确捕获行星驱动的密度波的动力学驱动缝隙形成。在这里,我们使用分析计算和流体动力学模拟探索磁盘中的子结构形成,其中包括与行星诱导的密度波相关的辐射效应的物理动机处方。我们的治疗不仅是从磁盘表面冷却的,还用于沿磁盘中平面的辐射传输。我们表明,由于表面冷却,这种平面内冷却通常比表面冷却短的时间级短,在密度波传播和耗散中起着至关重要的作用(我们提供了该时间表的简单估计)。我们还表明,粘度在原始磁盘($α\ Lessim 10^{ - 3} $)的预期水平上对密度波动力学的影响微不足道。使用尘埃连续发射的合成图,我们发现行星产生的间隙的多样性和形状对物理参数敏感---磁盘温度,质量和不透明度 - 确定密度波的阻尼。 $ \ lyssim 20 $ au的行星产生了最多样化的间隙/环结构,尽管在$ \ gtrsim 50 $ au的行星中也发现了显着变化。通过改善对行星盘耦合的物理处理的处理,我们的结果提出了探测磁盘环形亚结构的行星解释的新方法。

Many protoplanetary disks exhibit annular gaps in dust emission, which may be produced by planets. Simulations of planet-disk interaction aimed at interpreting these observations often treat the disk thermodynamics in an overly simplified manner, which does not properly capture the dynamics of planet-driven density waves driving gap formation. Here we explore substructure formation in disks using analytical calculations and hydrodynamical simulations that include a physically-motivated prescription for radiative effects associated with the planet-induced density waves. For the first time, our treatment accounts not only for cooling from the disk surface, but also for radiation transport along the disk midplane. We show that this in-plane cooling, with a characteristic timescale typically an order of magnitude shorter than the one due to surface cooling, plays a critical role in density wave propagation and dissipation (we provide a simple estimate of this timescale). We also show that viscosity, at the levels expected in protoplanetary disks ($α\lesssim 10^{-3}$), has a negligible effect on density wave dynamics. Using synthetic maps of dust continuum emission, we find that the multiplicity and shape of the gaps produced by planets are sensitive to the physical parameters---disk temperature, mass, and opacity---that determine the damping of density waves. Planets orbiting at $\lesssim 20$ au produce the most diverse variety of gap/ring structures, although significant variation is also found for planets at $\gtrsim 50$ au. By improving the treatment of physics governing planet-disk coupling, our results present new ways of probing the planetary interpretation of annular substructures in disks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源