论文标题
多级微型传递试验:检测消息对身体活动的近端影响
Multi-Level Micro-Randomized Trial: Detecting the Proximal Effect of Messages on Physical Activity
论文作者
论文摘要
移动设备的技术进步使得为个人提供移动健康干预措施成为可能。从这种进步中出现的新颖干预框架是及时的适应性干预(Jitai),它的目的是在出现需求时向个人提出正确的支持,从而产生近端,近代的未来影响。最近提出了微型试验(MRT)设计,以测试这些Jitais的近端作用。在MRT中,参与者在研究过程中以数百或数千个决策时间点的范围反复随机分配到各种干预组件中各种干预选项之一。但是,现存的地铁框架仅测试两级干预成分的近端效应(例如,对照与干预)。在本文中,我们提出了一个新颖的MRT设计版本,每个干预组件都有多个级别,我们称之为“多级微型机制试验”(MLMRT)设计。 MLMRT通过允许多级干预组件以及在研究期间向组件增加更多水平来扩展现有的MRT设计。我们将广义估计方程类型方法应用于由MLMRT引起的纵向数据,以开发新的测试统计数据,以评估近端效应并得出相关的样本量计算器。我们进行仿真研究以根据功率和精度评估样本量计算器。我们已经开发了样本量计算器的闪亮应用。这项提出的设计是由我们参与糖尿病和心理健康适应性通知跟踪和评估(DIAMANTE)研究的动机。这项研究使用了一种新型的移动应用程序,也称为“ Diamante”,该应用程序提供了自适应文本消息以鼓励体育锻炼。
Technological advancements in mobile devices have made it possible to deliver mobile health interventions to individuals. A novel intervention framework that emerges from such advancements is the just-in-time adaptive intervention (JITAI), where it aims to suggest the right support to the individual "just in time", when their needs arise, thus having proximal, near future effects. The micro-randomized trial (MRT) design was proposed recently to test the proximal effects of these JITAIs. In an MRT, participants are repeatedly randomized to one of the intervention options of various in the intervention components, at a scale of hundreds or thousands of decision time points over the course of the study. However, the extant MRT framework only tests the proximal effect of two-level intervention components (e.g. control vs intervention). In this paper, we propose a novel version of MRT design with multiple levels per intervention component, which we call "multi-level micro-randomized trial" (MLMRT) design. The MLMRT extends the existing MRT design by allowing multi-level intervention components, and the addition of more levels to the components during the study period. We apply generalized estimating equation type methodology on the longitudinal data arising from an MLMRT to develop the novel test statistics for assessing the proximal effects and deriving the associated sample size calculators. We conduct simulation studies to evaluate the sample size calculators based on both power and precision. We have developed an R shiny application of the sample size calculators. This proposed design is motivated by our involvement in the Diabetes and Mental Health Adaptive Notification Tracking and Evaluation (DIAMANTE) study. This study uses a novel mobile application, also called "DIAMANTE", which delivers adaptive text messages to encourage physical activity.