论文标题
BIDEAL:一次性分析工具箱 - 生成,可视化和验证
BIDEAL: A Toolbox for Bicluster Analysis -- Generation, Visualization and Validation
论文作者
论文摘要
本文介绍了一个新颖的工具箱,名为Bideal,用于生成双升,它们的分析,可视化和验证。目的是促进研究人员使用嵌入在单个平台上的前沿双层算法。一个包含各种双簇算法的单个工具箱在从数据中提取有意义的模式,用于检测疾病,生物标志物,基因 - 毒物关联等有意义的模式。比世由十七个双簇算法,三种双斑点技术组成。该工具箱可以通过图形用户界面分析几种类型的数据,包括生物学数据。它还促进了数据预处理技术,即二进制,离散化,归一化,消除零值和缺失值。已经通过测试和验证了B-Cells数据集中的酿酒酵母细胞周期,白血病,乳腺组织谱和配体筛选来实现开发工具箱的有效性。这些数据集的双晶布已经使用BIDEAL生成,并根据相干性,差异共表达排名和相似性度量进行了评估。还通过热图和基因图提供了生成的双升高的可视化。
This paper introduces a novel toolbox named BIDEAL for the generation of biclusters, their analysis, visualization, and validation. The objective is to facilitate researchers to use forefront biclustering algorithms embedded on a single platform. A single toolbox comprising various biclustering algorithms play a vital role to extract meaningful patterns from the data for detecting diseases, biomarkers, gene-drug association, etc. BIDEAL consists of seventeen biclustering algorithms, three biclusters visualization techniques, and six validation indices. The toolbox can analyze several types of data, including biological data through a graphical user interface. It also facilitates data preprocessing techniques i.e., binarization, discretization, normalization, elimination of null and missing values. The effectiveness of the developed toolbox has been presented through testing and validations on Saccharomyces cerevisiae cell cycle, Leukemia cancer, Mammary tissue profile, and Ligand screen in B-cells datasets. The biclusters of these datasets have been generated using BIDEAL and evaluated in terms of coherency, differential co-expression ranking, and similarity measure. The visualization of generated biclusters has also been provided through a heat map and gene plot.