论文标题
在较高衍生的无衍生物临界p形上的共形异常甚至球
Conformal anomalies for higher derivative free critical p-forms on even spheres
论文作者
论文摘要
根据Branson的说法,在$ d $($ p $的球形)上计算了保形异常 - 繁殖的形式 - 高级衍生品,共同协变的操作员。该系统以$ Q $ - 变形的球体设置,并将共形异常计算为衍生订单的合理函数,$ 2K $和$ Q $。仅以$ k <d/2 $的速度,异常在圆形球体上是一个极值($ q = 1 $)。因此,在这些整数值下,纠缠熵是像往常一样减去共形异常的。 不受约束的$ p $ - 在全球上的形式的形式形式的保质异常显示,是由在plancherel量度上的积分量的积分给出的,该量子的旋转措施是在较高的一维中的伴有形式的肠道表单。构建了自然幽灵总和,并导致数量,并导致关键形式的数量,即关键形式,即当$ 2k = d-2p $的$ bys $ bys $ nestial $ kembiatiation $ nestions $ kem nistials $ ke = ke nistial nes $ ke = ke y US of Secardiation $ ke y US of Section $ ke y US y USAUS,$ k. 可用的。我们的价值与最近对大卫和穆克吉的双曲线计算相吻合。对爱因斯坦圆柱体上的Casimir能量的价值是从保形异常的行为(作为$ q \ to0 $)的,并与已知的结果写为标量值上的交替总和。
The conformal anomaly is computed on even $d$--spheres for a $p$--form propagating according to the Branson--Gover higher derivative, conformally covariant operators. The system is set up on a $q$--deformed sphere and the conformal anomaly is computed as a rational function of the derivative order, $2k$, and of $q$. The anomaly is shown to be an extremum at the round sphere ($q=1$) only for $k<d/2$. At these integer values, therefore, the entanglement entropy is minus the conformal anomaly, as usual. The unconstrained $p$--form conformal anomaly on the full sphere is shown to be given by an integral over the Plancherel measure for a coexact form on hyperbolic space in one dimension higher.A natural ghost sum is constructed and leads to quantities which, for critical forms, i.e. when $2k=d-2p$, are, remarkably, a simple combination of standard quantities, for usual second order, $k=1$, propagation, when these are available. Our values coincide with a recent hyperbolic computation of David and Mukherjee.Values are suggested for the Casimir energy on the Einstein cylinder from the behaviour of the conformal anomaly as $q\to0$ and compared with known results written as alternating sums over scalar values.