论文标题

运输网络中的最佳混合:数值优化和分析

Optimal Mixing in Transport Networks: Numerical Optimization and Analysis

论文作者

Mentus, Cassidy, Roper, Marcus

论文摘要

许多觅食微生物依靠细胞运输网络来在生物体不同部位之间提供营养,液体和细胞器。从丝状真菌到粘液霉菌的网络生物具有出色的能力,可以在其传输介质中混合或分散分子和细胞器。在这里,我们介绍了数学工具,以分析节能传输网络的结构,这些网络最大化混合和发送来自每个节点的信号。我们在流量上定义了两种类型的熵,以量化混合并开发数值算法,以优化网络上熵和能量的组合,给定对可用材料量的限制。我们对有限三角网格的最佳单源 - 链网络进行了深入的探索,这是飞机上最佳运输网络的基本设置。使用数值模拟和严格的证据,我们表明,如果对电导的约束严格,则最佳网络是每个可能长度的路径。如果约束放松,我们的算法会产生循环网络,这些网络会在源头上扇出,然后倒回到流入水槽的单个路径中。综上所述,我们的结果扩大了可以将可以与真实生物学数据进行比较的最佳运输网络类别,并强调了如何通过运输效率与混合运输物质之间的权衡取舍来塑造实际网络形态。

Many foraging microorganisms rely upon cellular transport networks to deliver nutrients, fluid and organelles between different parts of the organism. Networked organisms ranging from filamentous fungi to slime molds demonstrate a remarkable ability to mix or disperse molecules and organelles in their transport media. Here we introduce mathematical tools to analyze the structure of energy efficient transport networks that maximize mixing and sending signals originating from and arriving at each node. We define two types of entropies on flows to quantify mixing and develop numerical algorithms to optimize the combination of entropy and energy on networks, given constraints on the amount of available material. We present an in-depth exploration of optimal single source-sink networks on finite triangular grids, a fundamental setting for optimal transport networks in the plane. Using numerical simulations and rigorous proofs, we show that, if the constraint on conductances is strict, the optimal networks are paths of every possible length. If the constraint is relaxed, our algorithm produces loopy networks that fan out at the source and pour back into a single path that flows to the sink. Taken together, our results expand the class of optimal transportation networks that can be compared with real biological data, and highlight how real network morphologies may be shaped by tradeoffs between transport efficiency and the need to mix the transported matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源