论文标题
MADGAN:使用多个相邻脑MRI切片重建的无监督医学异常检测GAN
MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction
论文作者
论文摘要
无监督的学习可以发现各种看不见的异常,依靠健康受试者的大规模未经注释的医学图像。为此,无监督的方法重建了2D/3D单个医疗图像,以检测到学习特征空间或高建筑损失中的异常值。但是,在不考虑多个相邻切片之间的连续性的情况下,它们不能直接区分由微妙的解剖异常(例如阿尔茨海默氏病)(AD)组成的疾病。此外,尚无研究表明无监督的异常检测与疾病阶段,各种疾病(即多种类型的)疾病或多序列磁共振成像(MRI)扫描如何相关。因此,我们提出了一种不受监督的医学异常检测生成对抗网络(MADGAN),这是一种新型的两步方法,使用基于GAN的多个邻近的大脑MRI SLICE重建,以在多序列结构MRI上检测不同阶段的大脑异常:(重新构造)在渐变损失中损失了渐变 + 100 l1 shefter + 100 l1 shefter + 100 l1 shefter the Health in shealth brain the Shorthy MRM MRM MRIR在3上的3个健康MRI,一个人会重建看不见的健康/异常扫描; (诊断)每次扫描的平均L2损失会区分它们,比较地面真相/重建切片。在培训中,我们使用两个不同的数据集,该数据集由1,133个健康的T1加权(T1)和135个健康的对比增强T1(T1C)脑MRI扫描分别用于检测AD和脑转移/各种疾病。我们的自我发作的Madgan可以在很早的阶段检测到T1扫描的AD,轻度认知障碍(MCI),曲线下的区域(AUC)为0.727,在后期的AUC为0.894,同时检测AUC 0.921的T1C扫描上的AUC脑转移。
Unsupervised learning can discover various unseen abnormalities, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a 2D/3D single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as Alzheimer's Disease (AD). Moreover, no study has shown how unsupervised anomaly detection is associated with either disease stages, various (i.e., more than two types of) diseases, or multi-sequence Magnetic Resonance Imaging (MRI) scans. Therefore, we propose unsupervised Medical Anomaly Detection Generative Adversarial Network (MADGAN), a novel two-step method using GAN-based multiple adjacent brain MRI slice reconstruction to detect brain anomalies at different stages on multi-sequence structural MRI: (Reconstruction) Wasserstein loss with Gradient Penalty + 100 L1 loss-trained on 3 healthy brain axial MRI slices to reconstruct the next 3 ones-reconstructs unseen healthy/abnormal scans; (Diagnosis) Average L2 loss per scan discriminates them, comparing the ground truth/reconstructed slices. For training, we use two different datasets composed of 1,133 healthy T1-weighted (T1) and 135 healthy contrast-enhanced T1 (T1c) brain MRI scans for detecting AD and brain metastases/various diseases, respectively. Our Self-Attention MADGAN can detect AD on T1 scans at a very early stage, Mild Cognitive Impairment (MCI), with Area Under the Curve (AUC) 0.727, and AD at a late stage with AUC 0.894, while detecting brain metastases on T1c scans with AUC 0.921.