论文标题

旋转傅立叶变换之间的点产品的简短字母

A short letter on the dot product between rotated Fourier transforms

论文作者

Voelker, Aaron R.

论文摘要

空间语义指针(SSP)最近成为表示和转换连续空间的强大工具,并在认知建模和深度学习中进行了许多应用。 SSP的基础是代表$ n $维空间中不同点的向量之间的“相似性”的概念 - 通常是傅立叶域中具有旋转单位长度复杂系数的向量之间的点产物或余弦相似性。以前,相似性度量已被认为是欧几里得距离的高斯函数。与这种猜想相反,我们得出了一个简单的三角公式,将空间位移与相似性相关联,并证明,在傅立叶系数均匀的情况下,预期相似性是归一化sinc函数的产物:$ \ prod__ {k = 1}}}}^{n}^{n}^{n}^{ $ \ mathbf {a} \ in \ mathbb {r}^n $是两个$ n $维点之间的空间位移。这建立了空间与SSP的相似性之间的直接联系,这反过来又有助于加强一个有用的数学框架来构建操纵空间结构的神经网络。

Spatial Semantic Pointers (SSPs) have recently emerged as a powerful tool for representing and transforming continuous space, with numerous applications to cognitive modelling and deep learning. Fundamental to SSPs is the notion of "similarity" between vectors representing different points in $n$-dimensional space -- typically the dot product or cosine similarity between vectors with rotated unit-length complex coefficients in the Fourier domain. The similarity measure has previously been conjectured to be a Gaussian function of Euclidean distance. Contrary to this conjecture, we derive a simple trigonometric formula relating spatial displacement to similarity, and prove that, in the case where the Fourier coefficients are uniform i.i.d., the expected similarity is a product of normalized sinc functions: $\prod_{k=1}^{n} \operatorname{sinc} \left( a_k \right)$, where $\mathbf{a} \in \mathbb{R}^n$ is the spatial displacement between the two $n$-dimensional points. This establishes a direct link between space and the similarity of SSPs, which in turn helps bolster a useful mathematical framework for architecting neural networks that manipulate spatial structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源