论文标题

通过深卷积神经网络的拉曼光谱分析的特征可视化

Feature visualization of Raman spectrum analysis with deep convolutional neural network

论文作者

Fukuhara, Masashi, Fujiwara, Kazuhiko, Maruyama, Yoshihiro, Itoh, Hiroyasu

论文摘要

我们展示了一种识别和特征可视化方法,该方法使用深层卷积神经网络进行拉曼光谱分析。可视化是通过计算汇总和完全连接层中的重量中的重要区域来实现的。首先检查该方法的简单洛伦兹光谱,然后应用于药物化合物和数值混合氨基酸的光谱。我们使用洛伦兹光谱研究了卷积过滤器对拉曼峰信号的提取区域的大小和数量的影响。可以通过可视化提取的特征来确认拉曼峰会有助于识别。在背景水平区域获得接近零的重量值,该区域似乎用于基线校正。通过评估数值混合氨基酸光谱,可以证实常见的成分提取。即使将模型作为训练标签(无混合比)赋予了一个速率向量,但在公共峰处的高重量值和独特峰处的负值也出现。该提出的方法可能适用于诸如验证训练模型的应用,从而确保从化合物样品中提取共同成分的可靠性进行光谱分析。

We demonstrate a recognition and feature visualization method that uses a deep convolutional neural network for Raman spectrum analysis. The visualization is achieved by calculating important regions in the spectra from weights in pooling and fully-connected layers. The method is first examined for simple Lorentzian spectra, then applied to the spectra of pharmaceutical compounds and numerically mixed amino acids. We investigate the effects of the size and number of convolution filters on the extracted regions for Raman-peak signals using the Lorentzian spectra. It is confirmed that the Raman peak contributes to the recognition by visualizing the extracted features. A near-zero weight value is obtained at the background level region, which appears to be used for baseline correction. Common component extraction is confirmed by an evaluation of numerically mixed amino acid spectra. High weight values at the common peaks and negative values at the distinctive peaks appear, even though the model is given one-hot vectors as the training labels (without a mix ratio). This proposed method is potentially suitable for applications such as the validation of trained models, ensuring the reliability of common component extraction from compound samples for spectral analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源