论文标题

符号随机差方程的渐近渐进式变化

Slowly varying asymptotics for signed stochastic difference equations

论文作者

Korshunov, Dmitry

论文摘要

对于随机差方程,$ d_n = a_nd_ {n-1}+b_n $在我们研究尾巴分布渐近造成$ d_n $的情况下稳定下来,假设$ \ log的分布(1+| a_1 | a_1 |+|+| b_1 |)$是重量的,这就是其所有积极的付出量的iNSents Inments Insents Insents Insents Insente insents insents insents insents insents insents insents Insentent。本文的目的是三倍。首先,我们不仅确定了固定尾巴分布的渐近行为,而且还确定$ d_n $的渐近行为。其次,当$ a $同时获得正值和负值时,我们在一般环境中解决了问题。第三,我们摆脱了辅助条件,例如以前在文献中使用的较高时刻的有限性。

For a stochastic difference equation $D_n=A_nD_{n-1}+B_n$ which stabilises upon time we study tail distribution asymptotics of $D_n$ under the assumption that the distribution of $\log(1+|A_1|+|B_1|)$ is heavy-tailed, that is, all its positive exponential moments are infinite. The aim of the present paper is three-fold. Firstly, we identify the asymptotic behaviour not only of the stationary tail distribution but also of $D_n$. Secondly, we solve the problem in the general setting when $A$ takes both positive and negative values. Thirdly, we get rid of auxiliary conditions like finiteness of higher moments used in the literature before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源