论文标题
关于适用于最小二乘的随机梯度下降的正则化作用
On the Regularization Effect of Stochastic Gradient Descent applied to Least Squares
论文作者
论文摘要
我们研究应用于$ \ | ax -b \ | _2^2 \ rightarrow \ min $的随机梯度下降的行为,用于可逆$ a \ in \ mathbb {r}^{r}^{n \ times n} $。我们表明,根据$ a $的$ \ mathbb {e}〜\ left \ | | ax_ {k + 1} -b \ right \ |^2_ {2} \ leq \ left(1 + \ frac {c_ {a}}} {\ | a \ | a \ | _f^2} \ oyt) \ frac {2} {\ | a \ | _f^2} \ left \ | a^t a(x_k- x)随机梯度下降导致快速正则化。对于对称矩阵,这种不平等具有向高阶Sobolev空间的扩展。这解释了一种(已知的)正则化现象:一个从大奇异值到小奇异值平滑的能量级联。
We study the behavior of stochastic gradient descent applied to $\|Ax -b \|_2^2 \rightarrow \min$ for invertible $A \in \mathbb{R}^{n \times n}$. We show that there is an explicit constant $c_{A}$ depending (mildly) on $A$ such that $$ \mathbb{E} ~\left\| Ax_{k+1}-b\right\|^2_{2} \leq \left(1 + \frac{c_{A}}{\|A\|_F^2}\right) \left\|A x_k -b \right\|^2_{2} - \frac{2}{\|A\|_F^2} \left\|A^T A (x_k - x)\right\|^2_{2}.$$ This is a curious inequality: the last term has one more matrix applied to the residual $u_k - u$ than the remaining terms: if $x_k - x$ is mainly comprised of large singular vectors, stochastic gradient descent leads to a quick regularization. For symmetric matrices, this inequality has an extension to higher-order Sobolev spaces. This explains a (known) regularization phenomenon: an energy cascade from large singular values to small singular values smoothes.