论文标题

限制双曲线组的分支随机步行

Limit set of branching random walks on hyperbolic groups

论文作者

Sidoravicius, Vladas, Wang, Longmin, Xiang, Kainan

论文摘要

令$γ$是一个非元素双曲线组,单词度量$ d $和$ \partialγ$其双曲线边界配备了视觉度量$ d_a $,用于某些参数$ a> 1 $。修复$γ$上的superexponential对称概率$ $ $ $ $ $,其支持会产生$γ$作为半群,并用$ρ$表示$§y $ y $ y $ y $γ$的频谱半径,带有step Distribution $μ$。令$ \ {1,\,2,\,3,\,\ ldots \} $,$ \ {1,\,\,\ ldots \} $的概率为$ \ sum = \ sum \ limits_ {k = 1}^\ inftykν(k)<\ infty $。 令$ \ mathrm {brw}(γ,\,\,ν,\,μ)$为$γ$上的分支随机步行,带有后代分布$ν$和基本运动$ y $ y $ y $ y $ y $ y $和$ h(λ)$的量$ \ \ mathrm {brw}(γ,\,\,c)的体积增长率。我们证明了$λ\在[1,\,ρ^{ - 1})$中,即极限设置的hausdorff尺寸$λ$,这是$(\partialγ,\,d_a)$的随机子集,由$ \ mathrm {brw}(brw}(γ)(γ)的所有积累点组成, $ \ log_a h(λ)$。此外,我们证明$ h(λ)$几乎是确定性的,严格的,严格增加$λ\在[1,\,ρ^{ - 1} $中的$λ\,都受体积增长率的平方根为$γ$的范围,并且具有关键的指数$ 1/2 $ $ 1/2 $ $ 1/2 $ $ρ^{ - 1} $ρ^{ - 1} $ extement。 \ [ h(ρ^{ - 1}) - h(λ)\ sim c \ sqrt {ρ^{ - 1} -c \]对于某些正恒定$ c $。我们推测关键情况下的$λ$的hausdorff尺寸几乎可以肯定。这已在有限的许多有限组的自由组或免费的产品(通过合并)上确认,该组配备了标准生成集定义的标准$ d $。

Let $Γ$ be a nonelementary hyperbolic group with a word metric $d$ and $\partialΓ$ its hyperbolic boundary equipped with a visual metric $d_a$ for some parameter $a>1$. Fix a superexponential symmetric probability $μ$ on $Γ$ whose support generates $Γ$ as a semigroup, and denote by $ρ$ the spectral radius of the random walk $Y$ on $Γ$ with step distribution $μ$. Let $ν$ be a probability on $\{1,\, 2, \, 3, \, \ldots\}$ with mean $λ=\sum\limits_{k=1}^\infty kν(k)<\infty$. Let $\mathrm{BRW}(Γ, \, ν, \, μ)$ be the branching random walk on $Γ$ with offspring distribution $ν$ and base motion $Y$ and $H(λ)$ the volume growth rate for the trace of $\mathrm{BRW}(Γ, \, ν, \, μ)$. We prove for $λ\in [1, \, ρ^{-1})$ that the Hausdorff dimension of the limit set $Λ$, which is the random subset of $(\partial Γ, \, d_a)$ consisting of all accumulation points of the trace of $\mathrm{BRW}(Γ, \, ν, \, μ)$, is given by $\log_a H(λ)$. Furthermore, we prove that $H(λ)$ is almost surely a deterministic, strictly increasing and continuous function of $λ\in [1, \, ρ^{-1}]$, is bounded by the square root of the volume growth rate of $Γ$, and has critical exponent $1/2$ at $ρ^{-1}$ in the sense that \[ H(ρ^{-1}) - H(λ) \sim C \sqrt{ρ^{-1} - λ} \quad \text{as } λ\uparrow ρ^{-1} \] for some positive constant $C$. We conjecture that the Hausdorff dimension of $Λ$ in the critical case $λ=ρ^{-1}$ is $\log_aH(ρ^{-1})$ almost surely. This has been confirmed on free groups or the free product (by amalgamation) of finitely many finite groups equipped with the word metric $d$ defined by the standard generating set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源