论文标题
因果关系行动中的边界贡献
Boundary contributions in the causal set action
论文作者
论文摘要
提供了一个猜想的证据,即在连续限制下,有限体积的因果集合集合的因果集合的平均因果集合的平均值,撒在全球双曲线的Lorentzian时空中,M,M,等于M的Einstein Hilbert Action M的Einstein Hilbert Action M加上Co-Dimension 2与过去边界的相交的体积。我们给出了这种猜想的启发式论点,并在2个维度中分析了一些示例,一个示例在4个维度中进行了示例。
Evidence is provided for a conjecture that, in the continuum limit, the mean of the causal set action of a causal set sprinkled into a globally hyperbolic Lorentzian spacetime, M, of finite volume equals the Einstein Hilbert action of M plus the volume of the co-dimension 2 intersection of the future boundary with the past boundary. We give the heuristic argument for this conjecture and analyse some examples in 2 dimensions and one example in 4 dimensions.