论文标题
深度光度立体声
Deep Photometric Stereo for Non-Lambertian Surfaces
论文作者
论文摘要
本文在校准和未校准的场景中解决了基于深度学习的非层表表面的光度立体声问题。我们首先引入了一个用于校准光度立体声的完全卷积深网,我们称之为PS-FCN。与采用简化反射模型的传统方法不同,我们的方法直接学习了从反射观测到表面正常的映射,并且能够以一般和未知的各向同性反射率处理表面。在测试时,PS-FCN将任意数量的图像及其相关的光方向作为输入,并预测快速进率通行证中场景的表面正常地图。为了处理未启发方向未知的未校准方案,我们介绍了一个名为LCNet的新卷积网络,以从输入图像估算光方向。然后将估计的光方向和输入图像馈送到PS-FCN,以确定表面正常。我们的方法不需要预定义的光方向,并且可以以顺序不稳定的方式处理多个图像。对合成数据集和真实数据集的方法的全面评估表明,在校准和未校准的情况下,它的表现都优于最先进的方法。
This paper addresses the problem of photometric stereo, in both calibrated and uncalibrated scenarios, for non-Lambertian surfaces based on deep learning. We first introduce a fully convolutional deep network for calibrated photometric stereo, which we call PS-FCN. Unlike traditional approaches that adopt simplified reflectance models to make the problem tractable, our method directly learns the mapping from reflectance observations to surface normal, and is able to handle surfaces with general and unknown isotropic reflectance. At test time, PS-FCN takes an arbitrary number of images and their associated light directions as input and predicts a surface normal map of the scene in a fast feed-forward pass. To deal with the uncalibrated scenario where light directions are unknown, we introduce a new convolutional network, named LCNet, to estimate light directions from input images. The estimated light directions and the input images are then fed to PS-FCN to determine the surface normals. Our method does not require a pre-defined set of light directions and can handle multiple images in an order-agnostic manner. Thorough evaluation of our approach on both synthetic and real datasets shows that it outperforms state-of-the-art methods in both calibrated and uncalibrated scenarios.