论文标题

深度琐事:使用深度学习估算体育活动的标志

Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning

论文作者

Mardini, Mamoun T., Wanigatunga, Subhash Nerella Amal A., Saldana, Santiago, Casanova, Ramon, Manini, Todd M.

论文摘要

随着智能手表技术的出现,用于评估体育锻炼标志(PA)的标志性测量值的手腕加速度计正在迅速增长。鉴于腕上加速度计的普及度越来越高,需要进行严格的评估以识别(PA)类型和整个寿命的能量消耗(EE)。参与者(66%的女性,20 - 89年)在标准化的实验室环境中进行了33次每日活动,而三轴加速度计收集了右手腕的数据。佩戴便携式代谢单位以测量代谢强度。我们构建了深度学习网络,以从时间序列数据中提取空间和时间表示,并用它们来识别PA类型并估计EE。深度学习模型导致了高性能。 F1得分分别为久坐,运动和生活方式活动,为0.82、0.81和95。对于EE的估计,均方根误差为1.1(+/- 0.13)。

Wrist accelerometers for assessing hallmark measures of physical activity (PA) are rapidly growing with the advent of smartwatch technology. Given the growing popularity of wrist-worn accelerometers, there needs to be a rigorous evaluation for recognizing (PA) type and estimating energy expenditure (EE) across the lifespan. Participants (66% women, aged 20-89 yrs) performed a battery of 33 daily activities in a standardized laboratory setting while a tri-axial accelerometer collected data from the right wrist. A portable metabolic unit was worn to measure metabolic intensity. We built deep learning networks to extract spatial and temporal representations from the time-series data, and used them to recognize PA type and estimate EE. The deep learning models resulted in high performance; the F1 score was: 0.82, 0.81, and 95 for recognizing sedentary, locomotor, and lifestyle activities, respectively. The root mean square error was 1.1 (+/-0.13) for the estimation of EE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源