论文标题
迭代促进深度神经网络,以预测点击率
Iterative Boosting Deep Neural Networks for Predicting Click-Through Rate
论文作者
论文摘要
点击率(CTR)反映了特定项目的点击率与其总视图总数的比率。它对网站的广告收入有重大影响。学习了解和预测用户行为的复杂模型对于在推荐系统中最大化CTR至关重要。最近的作品提出了新的方法,可以用各种深度学习(DL)分类器替代昂贵且耗时的功能工程过程,这些分类器能够从原始数据中捕获复杂的模式;这些方法显示了CTR预测任务的显着改善。虽然DL技术可以学习复杂的用户行为模式,但它依赖大量数据,并且在数据量有限的情况下不太执行。我们提出了XDBoost,这是一种新的DL方法,用于捕获仅需要有限数量的原始数据的复杂模式。 XDBoost是一种受传统机器学习机制影响的迭代三阶段神经网络模型。 XDBoost的组件类似于增强的依次相似。但是,与常规提升不同,XDBoost并不概括其组件产生的预测。取而代之的是,它利用这些预测作为新的人工特征,并通过使用这些功能来重新培训模型来增强CTR预测。进行的综合实验是为了说明XDBoost在两个数据集上的有效性,这表明其在CTR预测中胜过现有的最新模型(SOTA)模型的能力。
The click-through rate (CTR) reflects the ratio of clicks on a specific item to its total number of views. It has significant impact on websites' advertising revenue. Learning sophisticated models to understand and predict user behavior is essential for maximizing the CTR in recommendation systems. Recent works have suggested new methods that replace the expensive and time-consuming feature engineering process with a variety of deep learning (DL) classifiers capable of capturing complicated patterns from raw data; these methods have shown significant improvement on the CTR prediction task. While DL techniques can learn intricate user behavior patterns, it relies on a vast amount of data and does not perform as well when there is a limited amount of data. We propose XDBoost, a new DL method for capturing complex patterns that requires just a limited amount of raw data. XDBoost is an iterative three-stage neural network model influenced by the traditional machine learning boosting mechanism. XDBoost's components operate sequentially similar to boosting; However, unlike conventional boosting, XDBoost does not sum the predictions generated by its components. Instead, it utilizes these predictions as new artificial features and enhances CTR prediction by retraining the model using these features. Comprehensive experiments conducted to illustrate the effectiveness of XDBoost on two datasets demonstrated its ability to outperform existing state-of-the-art (SOTA) models for CTR prediction.