论文标题

智能:同时进行多代理复发轨迹预测

SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction

论文作者

N, Sriram N, Liu, Buyu, Pittaluga, Francesco, Chandraker, Manmohan

论文摘要

我们提出的进步将解决未来轨迹预测中的两个关键挑战:(i)训练数据和预测的多模态以及(ii)持续的时间推断,无论代理数量多少。现有的轨迹预测从根本上受到培训数据的多样性的限制,这很难获得可能的模式的足够覆盖。我们的第一个贡献是一种自动方法,以模拟顶级视图中的各种轨迹。它使用预先存在的数据集和地图作为初始化,现有的轨迹来表示现实的驾驶行为,并使用多代理车辆动力学模拟器来生成各种新轨迹,这些新轨迹涵盖了各种模式,并且与场景布局约束一致。我们的第二个贡献是一种新颖的方法,可以在考虑场景语义和多代理相互作用的同时产生各种预测,而恒定时间推断与代理的数量无关。我们提出了一个带有新型国家集合操作和损失的弯曲,以预测单个前向传球中多个代理的场景一致状态,以及多样性的CVAE。我们通过对所提出的模拟数据集进行培训和测试来验证我们提出的多代理轨迹预测方法以及交通场景的现有真实数据集。在这两种情况下,我们的方法都以很大的边距均优于SOTA方法,从而强调了我们多样化的数据集模拟和恒定时间多样的轨迹预测方法的好处。

We propose advances that address two key challenges in future trajectory prediction: (i) multimodality in both training data and predictions and (ii) constant time inference regardless of number of agents. Existing trajectory predictions are fundamentally limited by lack of diversity in training data, which is difficult to acquire with sufficient coverage of possible modes. Our first contribution is an automatic method to simulate diverse trajectories in the top-view. It uses pre-existing datasets and maps as initialization, mines existing trajectories to represent realistic driving behaviors and uses a multi-agent vehicle dynamics simulator to generate diverse new trajectories that cover various modes and are consistent with scene layout constraints. Our second contribution is a novel method that generates diverse predictions while accounting for scene semantics and multi-agent interactions, with constant-time inference independent of the number of agents. We propose a convLSTM with novel state pooling operations and losses to predict scene-consistent states of multiple agents in a single forward pass, along with a CVAE for diversity. We validate our proposed multi-agent trajectory prediction approach by training and testing on the proposed simulated dataset and existing real datasets of traffic scenes. In both cases, our approach outperforms SOTA methods by a large margin, highlighting the benefits of both our diverse dataset simulation and constant-time diverse trajectory prediction methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源