论文标题
无序介质中游离费米的微观电流的量子波动和较大的偏差原理
Quantum Fluctuations and Large Deviation Principle for Microscopic Currents of Free Fermions in Disordered Media
论文作者
论文摘要
我们贡献了在[N.J.B. Aza,J.-B。 Bru,W。DeSiqueira Pedra,A。Ratsimantrimanana,J。Math。 Pures Appl。 125(2019)209]关于无序培养基中自由晶格费米斯原子量表的电导率理论。疾病是由(i)像著名的安德森模型一样的随机外部潜力来建模的,以及(ii)一个最近的邻居跳跃术语,带有随机复杂值振幅。根据实验观察,通过大偏差形式主义,我们先前的论文表明,在这种情况下,微观电流密度的量子不确定性抑制了其(经典)宏观值周围的微观电流密度,而在施加外部电场的情况下,相对于晶格的区域的体积,相对于晶格的区域的体积呈指数快速。在这里,线性响应电流的量子波动显示在热力学极限中,我们在数学上证明它们与与当前密度相关的大偏差原理的速率函数有关。我们还证明,通常,它们不会消失(在热力学极限中),并且宏观电流密度周围的量子不确定性在指数级快速消失,指数速率与电流偏离其宏观值的平方偏差成比例的速率,并且相对于生长空间(体积)straces scales。
We contribute an extension of large-deviation results obtained in [N.J.B. Aza, J.-B. Bru, W. de Siqueira Pedra, A. Ratsimanetrimanana, J. Math. Pures Appl. 125 (2019) 209] on conductivity theory at atomic scale of free lattice fermions in disordered media. Disorder is modeled by (i) a random external potential, like in the celebrated Anderson model, and (ii) a nearest-neighbor hopping term with random complex-valued amplitudes. In accordance with experimental observations, via the large deviation formalism, our previous paper showed in this case that quantum uncertainty of microscopic electric current densities around their (classical) macroscopic value is suppressed, exponentially fast with respect to the volume of the region of the lattice where an external electric field is applied. Here, the quantum fluctuations of linear response currents are shown to exist in the thermodynamic limit and we mathematically prove that they are related to the rate function of the large deviation principle associated with current densities. We also demonstrate that, in general, they do not vanish (in the thermodynamic limit) and the quantum uncertainty around the macroscopic current density disappears exponentially fast with an exponential rate proportional to the squared deviation of the current from its macroscopic value and the inverse current fluctuation, with respect to growing space (volume) scales.