论文标题

MRGAN:多根3D形状生成,无监督零件分离

MRGAN: Multi-Rooted 3D Shape Generation with Unsupervised Part Disentanglement

论文作者

Gal, Rinon, Bermano, Amit, Zhang, Hao, Cohen-Or, Daniel

论文摘要

我们提出了MRGAN,这是一个多根的对抗网络,可生成无基于零件形状监管的零件触发3D点云形状。该网络融合了树结构图卷积层的多个分支,这些卷积层产生点云,并在树根上具有可学习的常数输入。每个分支都学会生长一个不同的形状部分,从而控制零件级别的形状生成。我们的网络通过两种关键成分鼓励分离出的语义部分:一种混合培训策略,有助于将不同的分支机构脱离以促进分离,以及一套以零件解开和形状的语义设计的损失条款。其中,一种新颖的凸度损失激发了语义部分往往会产生更多凸的部分的产生。另外,根介绍的损失进一步确保每个生物都有一个零件,从而防止了点产生分支的变性或过度增长。我们在许多3D形状类别上评估网络的性能,并为以前的作品和基线方法提供定性和定量的比较。我们通过两种用于形状建模的应用程序来证明我们的零件态生成提供的可控性:零件混合和各个零件变化,而无需接收分段形状作为输入。

We present MRGAN, a multi-rooted adversarial network which generates part-disentangled 3D point-cloud shapes without part-based shape supervision. The network fuses multiple branches of tree-structured graph convolution layers which produce point clouds, with learnable constant inputs at the tree roots. Each branch learns to grow a different shape part, offering control over the shape generation at the part level. Our network encourages disentangled generation of semantic parts via two key ingredients: a root-mixing training strategy which helps decorrelate the different branches to facilitate disentanglement, and a set of loss terms designed with part disentanglement and shape semantics in mind. Of these, a novel convexity loss incentivizes the generation of parts that are more convex, as semantic parts tend to be. In addition, a root-dropping loss further ensures that each root seeds a single part, preventing the degeneration or over-growth of the point-producing branches. We evaluate the performance of our network on a number of 3D shape classes, and offer qualitative and quantitative comparisons to previous works and baseline approaches. We demonstrate the controllability offered by our part-disentangled generation through two applications for shape modeling: part mixing and individual part variation, without receiving segmented shapes as input.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源