论文标题

学习变分数据同化模型和求解器

Learning Variational Data Assimilation Models and Solvers

论文作者

Fablet, Ronan, Chapron, Bertrand, Drumetz, Lucas., Memin, Etienne, Pannekoucke, Olivier, Rousseau, Francois

论文摘要

本文从学习的角度解决了变异数据同化。数据同化旨在重建某些状态的时间演变,并有一系列观察结果,可能是嘈杂的和不规则采样的。使用嵌入深度学习框架中的自动分化工具,我们引入了端到端神经网络体系结构以进行数据同化。它包括两个关键组成部分:一个变分模型和一个基于梯度的求解器,均以神经网络实现。拟议的端到端学习体系结构的一个关键特征是,我们可以使用受监督和无监督的策略培训NN模型。我们在Lorenz-63和Lorenz-96系统上进行的数值实验报告了显着增益W.R.T.在重建性能和优化复杂性方面,基于经典的基于梯度的最小化。有趣的是,我们还表明,从真实的Lorenz-63和Lorenz-96 Ode表示产生的变异模型可能不会导致最佳的重建性能。我们认为,这些结果可能会为地球科学中同化模型的规范提供新的研究途径。

This paper addresses variational data assimilation from a learning point of view. Data assimilation aims to reconstruct the time evolution of some state given a series of observations, possibly noisy and irregularly-sampled. Using automatic differentiation tools embedded in deep learning frameworks, we introduce end-to-end neural network architectures for data assimilation. It comprises two key components: a variational model and a gradient-based solver both implemented as neural networks. A key feature of the proposed end-to-end learning architecture is that we may train the NN models using both supervised and unsupervised strategies. Our numerical experiments on Lorenz-63 and Lorenz-96 systems report significant gain w.r.t. a classic gradient-based minimization of the variational cost both in terms of reconstruction performance and optimization complexity. Intriguingly, we also show that the variational models issued from the true Lorenz-63 and Lorenz-96 ODE representations may not lead to the best reconstruction performance. We believe these results may open new research avenues for the specification of assimilation models in geoscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源