论文标题

对抗性隐私的过滤器

Adversarial Privacy-preserving Filter

论文作者

Zhang, Jiaming, Sang, Jitao, Zhao, Xian, Huang, Xiaowen, Sun, Yanfeng, Hu, Yongli

论文摘要

虽然在实际应用中广泛采用,但对面部图像的恶意使用和潜在的隐私问题,例如欺骗支付系统和造成个人破坏的情况,对面部识别进行了严格的讨论。在线照片共享服务无意间充当恶意爬网和面部识别应用程序的主要存储库。这项工作旨在开发一种称为“对抗性隐私性过滤器(APF)”的保护解决方案,以保护在线共享的面部图像免受恶意使用。我们提出了一种终止云的对抗性攻击解决方案,以满足对隐私,公用事业和不可访问性的要求。具体而言,解决方案由三个模块组成:(1)特定于图像的梯度生成,以使用压缩探针模型在用户端提取特定于图像的梯度; (2)对抗梯度转移,以微调服务器云中特定图像的梯度; (3)通用的对抗扰动增强,以附加与图像无关的扰动以得出最终的对抗噪声。在三个数据集上进行的广泛实验验证了所提出的解决方案的有效性和效率。还发布了原型应用程序以进行进一步评估。我们希望最终云协作的攻击框架可以阐明解决在线多媒体共享隐私保护问题的问题。

While widely adopted in practical applications, face recognition has been critically discussed regarding the malicious use of face images and the potential privacy problems, e.g., deceiving payment system and causing personal sabotage. Online photo sharing services unintentionally act as the main repository for malicious crawler and face recognition applications. This work aims to develop a privacy-preserving solution, called Adversarial Privacy-preserving Filter (APF), to protect the online shared face images from being maliciously used.We propose an end-cloud collaborated adversarial attack solution to satisfy requirements of privacy, utility and nonaccessibility. Specifically, the solutions consist of three modules: (1) image-specific gradient generation, to extract image-specific gradient in the user end with a compressed probe model; (2) adversarial gradient transfer, to fine-tune the image-specific gradient in the server cloud; and (3) universal adversarial perturbation enhancement, to append image-independent perturbation to derive the final adversarial noise. Extensive experiments on three datasets validate the effectiveness and efficiency of the proposed solution. A prototype application is also released for further evaluation.We hope the end-cloud collaborated attack framework could shed light on addressing the issue of online multimedia sharing privacy-preserving issues from user side.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源