论文标题

基于深度学习模型的主动任务管理

Proactive Tasks Management based on a Deep Learning Model

论文作者

Kolomvatsos, Kostas, Anagnotopoulos, Christos

论文摘要

普遍的计算应用程序与周围用户的情报有关,可以促进其活动。该智能以与最终用户近距离嵌入式系统或设备中的软件组件的形式一起提供。一个可以托管智能普遍服务的基础架构是边缘计算(EC)基础架构。 EC节点可以执行许多由物联网(IoT)基础架构中的设备收集的数据的任务。在本文中,我们根据需求提出了一个智能,主动的任务管理模型。需求描述了有兴趣使用EC节点中可用任务的用户或应用程序的数量,从而表征其受欢迎程度。我们依靠深度机器学习(DML)模型,更具体地说是长期内存(LSTM)网络,以了解每个任务的需求指标的分布并估算未来的兴趣。这些信息与历史观察结果相结合,并支持决策计划,以结论由于对它们的兴趣有限,将卸载哪些任务。我们必须注意,在决策中,我们还考虑了每个任务可能会添加到分配的处理节点的负载。我们模型的描述伴随着大量的实验模拟,以评估所提出的机制。我们提供数值结果,并揭示所提出的方案能够在结论最有效的分配的同时决定即时决定。

Pervasive computing applications deal with intelligence surrounding users that can facilitate their activities. This intelligence is provided in the form of software components incorporated in embedded systems or devices in close distance with end users.One example infrastructure that can host intelligent pervasive services is the Edge Computing (EC) infrastructure. EC nodes can execute a number of tasks for data collected by devices present in the Internet of Things (IoT) infrastructure. In this paper, we propose an intelligent, proactive tasks management model based on the demand. Demand depicts the number of users or applications interested in using the available tasks in EC nodes, thus, characterizing their popularity. We rely on a Deep Machine Learning (DML) model and more specifically on a Long Short Term Memory (LSTM) network to learn the distribution of demand indicators for each task and estimate the future interest. This information is combined with historical observations and support a decision making scheme to conclude which tasks will be offloaded due to limited interest on them. We have to notice that in our decision making, we also take into consideration the load that every task may add to the processing node where it will be allocated. The description of our model is accompanied by a large set of experimental simulations for evaluating the proposed mechanism. We provide numerical results and reveal that the proposed scheme is capable of deciding on the fly while concluding the most efficient allocation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源