论文标题
基于模型远程元学习的几个轴承轴承诊断
Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning
论文作者
论文摘要
人工智能和深度学习的快速发展为进一步提高了工业网络物理系统(CPS)的安全性,稳定性和准确性提供了许多机会。作为许多关键任务CPS资产和设备的必不可少的组件,需要监视机械轴承,以确定任何异常条件的痕迹。使用大量提前收集的大量故障数据对轴承故障诊断的大多数数据驱动方法进行了最新的培训。但是,在许多实际应用中,为每个故障类别收集足够的数据示例可能是不安全的,并且耗时,这使得训练强大的分类器变得具有挑战性。在本文中,我们提出了一些基于模型不合时宜的元学习(MAML)的轴承诊断的学习框架,该框架针对使用有限数据训练有效的故障分类器的目标。此外,它可以利用培训数据并学会更有效地确定新的故障情况。关于新人造断层的概括的案例研究表明,所提出的框架的总体准确性比基于暹罗网络的基准研究高达25%。最后,通过使用人工损害中的数据,将其应用于实现实际承载损失,从而进一步验证了提出的框架的鲁棒性和概括能力,该数据与6个最先进的几次学习算法相比,使用一致的测试环境进行了比较。
The rapid development of artificial intelligence and deep learning has provided many opportunities to further enhance the safety, stability, and accuracy of industrial Cyber-Physical Systems (CPS). As indispensable components to many mission-critical CPS assets and equipment, mechanical bearings need to be monitored to identify any trace of abnormal conditions. Most of the data-driven approaches applied to bearing fault diagnosis up-to-date are trained using a large amount of fault data collected a priori. In many practical applications, however, it can be unsafe and time-consuming to collect sufficient data samples for each fault category, making it challenging to train a robust classifier. In this paper, we propose a few-shot learning framework for bearing fault diagnosis based on model-agnostic meta-learning (MAML), which targets for training an effective fault classifier using limited data. In addition, it can leverage the training data and learn to identify new fault scenarios more efficiently. Case studies on the generalization to new artificial faults show that the proposed framework achieves an overall accuracy up to 25% higher than a Siamese network-based benchmark study. Finally, the robustness and the generalization capability of the proposed framework are further validated by applying it to identify real bearing damages using data from artificial damages, which compares favorably against 6 state-of-the-art few-shot learning algorithms using consistent test environments.