论文标题
弱透镜调查中的照片-Z离群自我校准
Photo-z outlier self-calibration in weak lensing surveys
论文作者
论文摘要
使用外部数据校准光度透镜调查中的光度红移误差极具挑战性。我们表明,高斯和离群图Z参数都可以单独从数据中进行自校准。对于中微子质量,状态$ W_0 $的中微子质量,曲率和暗能量方程来说,这是免费的,但是当$ W_0 $和$ W_A $都不同时,$ W_0 $ $ W_0 $。我们对Vera Rubin天文台(VRO)时空(LSST)3x2分析进行了现实的预测,结合了宇宙剪切,预测的星系聚类和星系 - 星系镜头。我们证实了边缘化对照片-Z异常值的重要性。我们检查了一个被称为“零相关性”的内部互相关子集,这些相关性通常在3x2分析中被忽略。尽管仅贡献了$ \ sim的$ 10%的总信噪比,但这些无效相关性提高了Photo-Z参数的约束,最多可提高一个数量级。使用与来源和镜头相同的星系样品也大大改善了照片-Z的不确定性。这些方法共同增加了任何检测到的新物理学主张,并将宇宙学的统计错误降低15%和10%。最后,包括Simons天文台或CMB-S4的实验中的CMB镜头,将宇宙学和照片的后验约束提高了约10%,并进一步提高了系统学的鲁棒性。为了对Fisher的预测进行直觉,我们详细研究了几种玩具模型,这些模型解释了Photo-Z自我校准的起源。我们的Fisher Code Lassi(大规模结构信息),其中包括高斯和离群摄影的效果,剪切乘偏见,线性星系偏见以及$λ$ CDM的扩展,可在https://github.com/emmanuelschaan/lassi上公开获得。
Calibrating photometric redshift errors in weak lensing surveys with external data is extremely challenging. We show that both Gaussian and outlier photo-z parameters can be self-calibrated from the data alone. This comes at no cost for the neutrino masses, curvature and dark energy equation of state $w_0$, but with a 65% degradation when both $w_0$ and $w_a$ are varied. We perform a realistic forecast for the Vera Rubin Observatory (VRO) Legacy Survey of Space and Time (LSST) 3x2 analysis, combining cosmic shear, projected galaxy clustering and galaxy - galaxy lensing. We confirm the importance of marginalizing over photo-z outliers. We examine a subset of internal cross-correlations, dubbed "null correlations", which are usually ignored in 3x2 analyses. Despite contributing only $\sim$ 10% of the total signal-to-noise, these null correlations improve the constraints on photo-z parameters by up to an order of magnitude. Using the same galaxy sample as sources and lenses dramatically improves the photo-z uncertainties too. Together, these methods add robustness to any claim of detected new Physics, and reduce the statistical errors on cosmology by 15% and 10% respectively. Finally, including CMB lensing from an experiment like Simons Observatory or CMB-S4 improves the cosmological and photo-z posterior constraints by about 10%, and further improves the robustness to systematics. To give intuition on the Fisher forecasts, we examine in detail several toy models that explain the origin of the photo-z self-calibration. Our Fisher code LaSSI (Large-Scale Structure Information), which includes the effect of Gaussian and outlier photo-z, shear multiplicative bias, linear galaxy bias, and extensions to $Λ$CDM, is publicly available at https://github.com/EmmanuelSchaan/LaSSI .