论文标题

检测在线仇恨言论:使用弱监督和网络嵌入模型的方法

Detecting Online Hate Speech: Approaches Using Weak Supervision and Network Embedding Models

论文作者

Ridenhour, Michael, Bagavathi, Arunkumar, Raisi, Elaheh, Krishnan, Siddharth

论文摘要

社交媒体的普遍性改变了个人之间的在线互动。尽管有积极影响,但它还允许反社会因素团结在替代社交媒体环境中(例如GAB.com),从未有过。使用自动化技术检测这种可恨的言语可以使社交媒体平台可以调节其内容并防止诸如仇恨言论传播之类的邪恶活动。在这项工作中,我们提出了一个薄弱的监督深度学习模型,该模型 - (i)量化可恶的用户,(ii)进行了一种新颖的定性分析,以揭示间接的仇恨对话。该模型在交互级别而不是帖子或用户级别上分数内容,并允许表征最经常参与仇恨对话的用户。我们在1920万帖子上评估了我们的模型,并表明我们的弱监督模型在识别间接仇恨互动方面优于基线模型。我们还分析了一个多层网络,该网络是由GAB中的两种类型的用户交互(报价和答复)以及来自弱监督模型的互动分数作为边缘权重,以预测可恶的用户。我们利用多层网络嵌入方法来生成预测任务的功能,我们表明,考虑来自多个网络的用户上下文有助于实现对GAB中仇恨用户的更好预测。与单层或同质网络嵌入模型相比,我们获得高达7%的性能增长。

The ubiquity of social media has transformed online interactions among individuals. Despite positive effects, it has also allowed anti-social elements to unite in alternative social media environments (eg. Gab.com) like never before. Detecting such hateful speech using automated techniques can allow social media platforms to moderate their content and prevent nefarious activities like hate speech propagation. In this work, we propose a weak supervision deep learning model that - (i) quantitatively uncover hateful users and (ii) present a novel qualitative analysis to uncover indirect hateful conversations. This model scores content on the interaction level, rather than the post or user level, and allows for characterization of users who most frequently participate in hateful conversations. We evaluate our model on 19.2M posts and show that our weak supervision model outperforms the baseline models in identifying indirect hateful interactions. We also analyze a multilayer network, constructed from two types of user interactions in Gab(quote and reply) and interaction scores from the weak supervision model as edge weights, to predict hateful users. We utilize the multilayer network embedding methods to generate features for the prediction task and we show that considering user context from multiple networks help achieving better predictions of hateful users in Gab. We receive up to 7% performance gain compared to single layer or homogeneous network embedding models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源