论文标题

KPRNET:改善基于投影的激光雷达语义细分

KPRNet: Improving projection-based LiDAR semantic segmentation

论文作者

Kochanov, Deyvid, Nejadasl, Fatemeh Karimi, Booij, Olaf

论文摘要

语义分割是自动驾驶汽车感知系统中的重要组成部分。在这项工作中,我们采用了图像和点云分段的最新进展,以在分割激光扫描的任务中获得更好的准确性。 KPRNET改善了2D投影方法的卷积神经网络架构,并利用KPCONV用可学习的点组件替换常用的后处理技术,从而使我们能够获得更准确的3D标签。通过这些改进,我们的模型优于Semantickitti基准测试的当前最佳方法,达到63.1的MIOU。

Semantic segmentation is an important component in the perception systems of autonomous vehicles. In this work, we adopt recent advances in both image and point cloud segmentation to achieve a better accuracy in the task of segmenting LiDAR scans. KPRNet improves the convolutional neural network architecture of 2D projection methods and utilizes KPConv to replace the commonly used post-processing techniques with a learnable point-wise component which allows us to obtain more accurate 3D labels. With these improvements our model outperforms the current best method on the SemanticKITTI benchmark, reaching an mIoU of 63.1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源