论文标题

具有MPC支持的隐私性神经网络培训针对恶意攻击

MPC-enabled Privacy-Preserving Neural Network Training against Malicious Attack

论文作者

Liu, Ziyao, Tjuawinata, Ivan, Xing, Chaoping, Lam, Kwok-Yan

论文摘要

近年来,安全多方计算(MPC)在机器学习中的应用,尤其是保护隐私的神经网络培训,引起了研究界的极大关注。 MPC使几个数据所有者能够共同培训神经网络,同时保留每个参与者的数据隐私。但是,以前的大多数作品都集中在无法承受恶意参与者发送的欺诈信息的半honest威胁模型上。在本文中,我们提出了一种用于构建有效的$ n $ - 方协议的方法,用于安全的神经网络培训,即使大多数当事方都是恶意的,也可以为所有诚实的参与者提供安全性。与在不诚实的多数环境中提供半honest安全性的其他设计相比,我们积极安全的神经网络培训会在LAN和WAN设置中分别为2倍和2.7倍的负担得起的效率开销。此外,我们提出了一项方案,以允许在整数环$ \ mathbb {z} _n $上定义的添加股,以通过有限字段$ \ mathbb {z} _q $将其安全转换为加性股票,这可能是独立的。这种转换方案对于在预处理阶段中生成的整数环​​上定义的牢固,正确转换共享的海狸三元圈至关重要,以在在线阶段计算中定义的三倍定义。

The application of secure multiparty computation (MPC) in machine learning, especially privacy-preserving neural network training, has attracted tremendous attention from the research community in recent years. MPC enables several data owners to jointly train a neural network while preserving the data privacy of each participant. However, most of the previous works focus on semi-honest threat model that cannot withstand fraudulent messages sent by malicious participants. In this paper, we propose an approach for constructing efficient $n$-party protocols for secure neural network training that can provide security for all honest participants even when a majority of the parties are malicious. Compared to the other designs that provide semi-honest security in a dishonest majority setting, our actively secure neural network training incurs affordable efficiency overheads of around 2X and 2.7X in LAN and WAN settings, respectively. Besides, we propose a scheme to allow additive shares defined over an integer ring $\mathbb{Z}_N$ to be securely converted to additive shares over a finite field $\mathbb{Z}_Q$, which may be of independent interest. Such conversion scheme is essential in securely and correctly converting shared Beaver triples defined over an integer ring generated in the preprocessing phase to triples defined over a field to be used in the calculation in the online phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源