论文标题
未重复的循环长度和sidon序列
Non-repeated cycle lengths and Sidon sequences
论文作者
论文摘要
我们证明了Boros,Caro,Füredi和Yuster的猜想,在2个连接的图中的最大边数没有重复的循环长度,这是ERDőS长期存在的限制版本。我们的证明以及匹配的Boros,Caro,Füredi和Yuster的下限结构表明,在概念上可以简化此问题,以减少在数字理论中找到最大Sidon序列的开创性问题。
We prove a conjecture of Boros, Caro, Füredi and Yuster on the maximum number of edges in a 2-connected graph without repeated cycle lengths, which is a restricted version of a longstanding problem of Erdős. Our proof together with the matched lower bound construction of Boros, Caro, Füredi and Yuster show that this problem can be conceptually reduced to the seminal problem of finding the maximum Sidon sequences in number theory.