论文标题
解释空间无限的生成模型
Interpreting Spatially Infinite Generative Models
论文作者
论文摘要
传统的图像和其他空间方式的深层生成模型只能产生固定尺寸的输出。生成的图像具有与训练图像完全相同的分辨率,训练图像取决于基础神经网络中的层数。然而,最近的工作表明,将空间噪声向量馈入完全卷积的神经网络中,都可以产生任意分辨率的输出图像以及对任意分辨率训练图像的训练。尽管这项工作提供了令人印象深刻的经验结果,但几乎没有理论解释来解释潜在的生成过程。在本文中,我们通过与空间随机过程建立联系,为无限的空间生成提供了坚定的理论解释。我们使用由此产生的直觉来改进现有的空间无限生成模型,以通过我们称为无限生成的对抗网络或$ \ infty $ gan的模型来实现更有效的培训。世界地图生成,全景图像和纹理合成的实验验证了$ \ infty $ gan有效生成任意大小的图像的能力。
Traditional deep generative models of images and other spatial modalities can only generate fixed sized outputs. The generated images have exactly the same resolution as the training images, which is dictated by the number of layers in the underlying neural network. Recent work has shown, however, that feeding spatial noise vectors into a fully convolutional neural network enables both generation of arbitrary resolution output images as well as training on arbitrary resolution training images. While this work has provided impressive empirical results, little theoretical interpretation was provided to explain the underlying generative process. In this paper we provide a firm theoretical interpretation for infinite spatial generation, by drawing connections to spatial stochastic processes. We use the resulting intuition to improve upon existing spatially infinite generative models to enable more efficient training through a model that we call an infinite generative adversarial network, or $\infty$-GAN. Experiments on world map generation, panoramic images and texture synthesis verify the ability of $\infty$-GAN to efficiently generate images of arbitrary size.