论文标题
椭圆形Bihamiltonian结构来自相对移位的泊松结构
Elliptic bihamiltonian structures from relative shifted Poisson structures
论文作者
论文摘要
在本文中,概括了\ cite {hp1}的构建,我们在卡拉比yau纤维上(可能带有奇异纤维)上装备了复合物的相对模量堆栈,并具有转移的泊松结构。将此构造应用于表面上的抗宪法线性系统,我们在扩展Feigin-odesskii Poisson托架的投影空间上获得了兼容的泊松支架的示例。明确计算来自Hirzebruch表面的相应兼容支架,我们在\ cite {OW}中恢复了由Odesskii-Wolf定义的括号。
In this paper, generalizing the construction of \cite{HP1}, we equip the relative moduli stack of complexes over a Calabi-Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin-Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii-Wolf in \cite{OW}.