论文标题

上下文感知的细心知识追踪

Context-Aware Attentive Knowledge Tracing

论文作者

Ghosh, Aritra, Heffernan, Neil, Lan, Andrew S.

论文摘要

知识追踪(KT)是指预测未来学习者表现的问题,因为他们在教育应用中的过去表现。使用灵活的深神经网络模型在KT中的最新发展在此任务中表现出色。但是,这些模型通常提供有限的解释性,因此使其不足以进行个性化学习,这需要使用可解释的反馈和可行的建议来帮助学习者获得更好的学习成果。在本文中,我们提出了细心的知识追踪(AKT),该知识追踪(AKT)将基于注意力的神经网络模型与一系列新型,可解释的模型组件相结合,受认知和心理测量模型的启发。 AKT使用一种新颖的单调注意机制,将学习者对评估问题的未来回答与他们过去的回答有关;除了问题之间的相似性外,使用指数衰减和上下文感知的相对距离度量计算注意力重量。此外,我们使用Rasch模型将概念和问题嵌入正规化。这些嵌入能够在同一概念上捕获问题之间的个体差异,而无需使用过多的参数。我们在几个现实世界的基准数据集上进行实验,并表明AKT在预测未来的学习者响应方面优于现有的KT方法(在某些情况下为AUC的$ 6 \%$)。我们还进行了几项案例研究,并表明AKT具有出色的解释性,因此具有在现实世界中教育环境中自动反馈和个性化的潜力。

Knowledge tracing (KT) refers to the problem of predicting future learner performance given their past performance in educational applications. Recent developments in KT using flexible deep neural network-based models excel at this task. However, these models often offer limited interpretability, thus making them insufficient for personalized learning, which requires using interpretable feedback and actionable recommendations to help learners achieve better learning outcomes. In this paper, we propose attentive knowledge tracing (AKT), which couples flexible attention-based neural network models with a series of novel, interpretable model components inspired by cognitive and psychometric models. AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses; attention weights are computed using exponential decay and a context-aware relative distance measure, in addition to the similarity between questions. Moreover, we use the Rasch model to regularize the concept and question embeddings; these embeddings are able to capture individual differences among questions on the same concept without using an excessive number of parameters. We conduct experiments on several real-world benchmark datasets and show that AKT outperforms existing KT methods (by up to $6\%$ in AUC in some cases) on predicting future learner responses. We also conduct several case studies and show that AKT exhibits excellent interpretability and thus has potential for automated feedback and personalization in real-world educational settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源