论文标题

MLJ:朱莉娅(Julia)的可组合机器学习包

MLJ: A Julia package for composable machine learning

论文作者

Blaom, Anthony D., Kiraly, Franz, Lienart, Thibaut, Simillides, Yiannis, Arenas, Diego, Vollmer, Sebastian J.

论文摘要

MLJ(Julia中的机器学习)是一个开源软件包,它提供了一个通用接口,用于与用Julia和其他语言编写的机器学习模型进行交互。它提供了用于选择,调整,评估,构图和比较这些模型的工具和元算法,重点是灵活的模型组成。在此设计概述中,我们详细介绍了该框架的首席新颖性,以及朱莉娅(Julia)对主要的多语言替代方案的明显好处。

MLJ (Machine Learing in Julia) is an open source software package providing a common interface for interacting with machine learning models written in Julia and other languages. It provides tools and meta-algorithms for selecting, tuning, evaluating, composing and comparing those models, with a focus on flexible model composition. In this design overview we detail chief novelties of the framework, together with the clear benefits of Julia over the dominant multi-language alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源