论文标题

无限稳定图具有较大的色数

Infinite Stable Graphs With Large Chromatic Number

论文作者

Halevi, Yatir, Kaplan, Itay, Shelah, Saharon

论文摘要

我们证明,如果$ g =(v,e)$是$ω$ - 稳定(分别为$χ(g)> \ aleph_0 $(分别为$ 2^{\ aleph_0} $),则$ g $,然后包含移位图$ \ fort $ \ n $ for的所有有限的子图。我们证明了该定理的变体用于在固定稳定理论中可解释的图形。此外,如果$ g $为$ω$ - 稳定,则使用$ \ mathrm {u}(g)\ leq 2 $,我们证明$ n \ leq 2 $足够。

We prove that if $G=(V,E)$ is an $ω$-stable (respectively, superstable) graph with $χ(G)>\aleph_0$ (respectively, $2^{\aleph_0}$) then $G$ contains all the finite subgraphs of the shift graph $\text{Sh}_n(ω)$ for some $n$. We prove a variant of this theorem for graphs interpretable in stationary stable theories. Furthermore, if $G$ is $ω$-stable with $\mathrm{U}(G)\leq 2$ we prove that $n\leq 2$ suffices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源