论文标题

ADS的REGGE限制$ _3 $全息相关器

The Regge limit of AdS$_3$ holographic correlators

论文作者

Giusto, Stefano, Hughes, Marcel R. R., Russo, Rodolfo

论文摘要

我们研究了树级超级近似中的4点AD $ _3 \ times s^3 $相关器,并提供各种明确检查在整体图片中得出的Eikonal阶段与某些双重轨道操作员的异常维度之间的关系。我们认为涉及所有光操作员和HHLL相关因子的相关因子都具有两个光和两个重型多粒子状态。这些重型操作员具有与中央电荷成正比的形成尺寸,并且是该理论的纯状态,双重与渐近广告$ _3 \ times s^3 $常规几何形状。偏离广告$ _3 \ times s^3 $的偏差是由比例$μ$参数化的,与双重操作员的共形尺寸有关。在HHLL案例中,我们以$μ$的领先顺序工作,并在regge限制中得出与引导关系有关的CFT数据。具体而言,我们表明,与锥形缺陷几何相关的这些方程的最小解与微晶格几何对纯状态所隐含的溶液不同。

We study the Regge limit of 4-point AdS$_3 \times S^3$ correlators in the tree-level supergravity approximation and provide various explicit checks of the relation between the eikonal phase derived in the bulk picture and the anomalous dimensions of certain double-trace operators. We consider both correlators involving all light operators and HHLL correlators with two light and two heavy multi-particle states. These heavy operators have a conformal dimension proportional to the central charge and are pure states of the theory, dual to asymptotically AdS$_3 \times S^3$ regular geometries. Deviation from AdS$_3 \times S^3$ is parametrised by a scale $μ$ and is related to the conformal dimension of the dual heavy operator. In the HHLL case, we work at leading order in $μ$ and derive the CFT data relevant to the bootstrap relations in the Regge limit. Specifically, we show that the minimal solution to these equations relevant for the conical defect geometries is different to the solution implied by the microstate geometries dual to pure states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源