论文标题
使用方形优化总和优化,对电线传动的臂杆不足的机器人的稳健控制合成和验证
Robust Control Synthesis and Verification for Wire-Borne Underactuated Brachiating Robots Using Sum-of-Squares Optimization
论文作者
论文摘要
控制电线传动力不足的手臂机器人需要强大的反馈控制设计,该设计可以处理动态的不确定性,执行器约束和不可衡量的状态。在本文中,我们开发了一个强大的反馈控制,用于在柔性电缆上进行手臂,这是基于以前的最佳轨迹生成和随时间变化的LQR控制器设计的工作。我们提出了一个新颖的简化模型,用于近似柔性电缆动力学,该模型可以在系统中包含参数模型不确定性。然后,我们使用半决赛编程(SDP)和平方总和(SOS)优化来合成具有随时间变化的反馈控制具有正式鲁棒性,可以保证系统中的模型不确定性和无法衡量的状态。通过模拟,硬件实验和与时变的LQR控制器的比较,可以表明,所提出的可靠控制器会导致相对较大的稳健向后可触及的集合,并能够可靠地跟踪预先产生的最佳轨迹,并在存在参数模型的状态,Actuerties,Actuator lims和Insobss和Obsobss和Obsobss和Obsobsobs和Obsobsobs和Obsobsobs和Obsobsobs和Obsobsobs和Obsobsobs和Obsobsobs和Obsobss and Obsobs and obsobs and ob ob bys obsobs and ob ob bubsecties the to har the。
Control of wire-borne underactuated brachiating robots requires a robust feedback control design that can deal with dynamic uncertainties, actuator constraints and unmeasurable states. In this paper, we develop a robust feedback control for brachiating on flexible cables, building on previous work on optimal trajectory generation and time-varying LQR controller design. We propose a novel simplified model for approximation of the flexible cable dynamics, which enables inclusion of parametric model uncertainties in the system. We then use semidefinite programming (SDP) and sum-of-squares (SOS) optimization to synthesize a time-varying feedback control with formal robustness guarantees to account for model uncertainties and unmeasurable states in the system. Through simulation, hardware experiments and comparison with a time-varying LQR controller, it is shown that the proposed robust controller results in relatively large robust backward reachable sets and is able to reliably track a pre-generated optimal trajectory and achieve the desired brachiating motion in the presence of parametric model uncertainties, actuator limits, and unobservable states.