论文标题
与场景一致运动预测的隐式潜在变量模型
Implicit Latent Variable Model for Scene-Consistent Motion Forecasting
论文作者
论文摘要
为了计划安全的操作,自动驾驶汽车必须准确地感知其环境,并了解交通参与者之间的互动。在本文中,我们旨在直接从传感器数据中学习对场景一致的运动预测。特别是,我们建议通过隐式潜在变量模型来表征未来轨迹的联合分布。我们将场景建模为交互图形,并采用强大的图形神经网络来学习场景的分布式潜在表示。再加上确定性解码器,我们获得了在交通参与者之间保持一致的轨迹样本,从而实现了最新的运动结果预测和相互作用的理解。最后但并非最不重要的一点是,我们证明了我们的运动预测会导致更安全,更舒适的运动计划。
In order to plan a safe maneuver an autonomous vehicle must accurately perceive its environment, and understand the interactions among traffic participants. In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data. In particular, we propose to characterize the joint distribution over future trajectories via an implicit latent variable model. We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene. Coupled with a deterministic decoder, we obtain trajectory samples that are consistent across traffic participants, achieving state-of-the-art results in motion forecasting and interaction understanding. Last but not least, we demonstrate that our motion forecasts result in safer and more comfortable motion planning.