论文标题

批判性地检查卷积的索赔价值比推荐系统的用户项目嵌入地图

Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems

论文作者

Dacrema, Maurizio Ferrari, Parroni, Federico, Cremonesi, Paolo, Jannach, Dietmar

论文摘要

近年来,推荐系统领域的算法研究已从基质分解技术及其潜在因子模型转变为神经方法。但是,鉴于潜在因子模型的可靠力量,一些较新的神经方法将它们纳入了更复杂的网络体系结构中。最近由几位研究人员提出的一个具体想法是,要考虑潜在因素(即嵌入)之间的潜在相关性,通过在用户 - 项目交互图上应用卷积。但是,与这些文章中声称的相反,此类相互作用图并不具有卷积神经网络(CNN)特别有用的图像的属性。在这项工作中,我们通过分析考虑和经验评估表明,文献中报道的声称的收益不能归因于CNN在原始论文中所说的,CNN能够建模嵌入相关性的能力。此外,附加的绩效评估表明,所有基于CNN的最新模型的表现都超过了现有的非神经机器学习技术或传统的最近邻居方法。在更一般的层面上,我们的工作指出了推荐系统研究中的主要方法论问题。

In recent years, algorithm research in the area of recommender systems has shifted from matrix factorization techniques and their latent factor models to neural approaches. However, given the proven power of latent factor models, some newer neural approaches incorporate them within more complex network architectures. One specific idea, recently put forward by several researchers, is to consider potential correlations between the latent factors, i.e., embeddings, by applying convolutions over the user-item interaction map. However, contrary to what is claimed in these articles, such interaction maps do not share the properties of images where Convolutional Neural Networks (CNNs) are particularly useful. In this work, we show through analytical considerations and empirical evaluations that the claimed gains reported in the literature cannot be attributed to the ability of CNNs to model embedding correlations, as argued in the original papers. Moreover, additional performance evaluations show that all of the examined recent CNN-based models are outperformed by existing non-neural machine learning techniques or traditional nearest-neighbor approaches. On a more general level, our work points to major methodological issues in recommender systems research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源