论文标题

环形Q-Opers

Toroidal q-Opers

论文作者

Koroteev, Peter, Zeitlin, Anton M.

论文摘要

我们定义并研究了与bethe方程相关的$ q $ opers的空间,用于XXZ类型的可集成模型,该模型具有量子环形代数对称性。我们的构建是通过研究环状Quiver品种的枚举几何形状的研究,尤其是ADHM模量空间。我们定义$(\ overline {gl}(\ infty),q)$ - 具有常规奇异性的opers,然后通过对奇异性施加各种分析条件,到达toroidal $ q $ opers的所需的伯特伯特方程。

We define and study the space of $q$-opers associated with Bethe equations for integrable models of XXZ type with quantum toroidal algebra symmetry. Our construction is suggested by the study of the enumerative geometry of cyclic quiver varieties, in particular, the ADHM moduli spaces. We define $(\overline{GL}(\infty),q)$-opers with regular singularities and then, by imposing various analytic conditions on singularities, arrive at the desired Bethe equations for toroidal $q$-opers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源