论文标题
使用Bert的对话系统的产品标题生成
Product Title Generation for Conversational Systems using BERT
论文作者
论文摘要
通过语音技术的最新进步和智能设备的引入,例如Amazon Alexa和Google Home,越来越多的用户正在通过语音与应用程序进行交互。电子商务公司通常在需要简洁的情况下在其网页上显示短产品标题,无论是人类策划的还是算法生成的,但这些标题与自然语言不同。例如,可以在网页上显示“幸运魅力无麸质麦片,20.5盎司幸运符麸质”,但可以在网页上显示,但“ 20.5盎司的幸运魅力无麸质谷物”可以更容易在对话系统上理解。与显示设备相比,可以向用户提供图像和详细的产品信息,与语音助手接口时,必须使用简短的产品标题。我们提出了一种使用BERT的序列到序列方法,以从输入Web标题中生成简短的,自然的语言标题。我们对现实世界行业数据集和对模型输出的人类评估的广泛实验表明,伯特摘要的表现优于可比的基线模型。
Through recent advancements in speech technology and introduction of smart devices, such as Amazon Alexa and Google Home, increasing number of users are interacting with applications through voice. E-commerce companies typically display short product titles on their webpages, either human-curated or algorithmically generated, when brevity is required, but these titles are dissimilar from natural spoken language. For example, "Lucky Charms Gluten Free Break-fast Cereal, 20.5 oz a box Lucky Charms Gluten Free" is acceptable to display on a webpage, but "a 20.5 ounce box of lucky charms gluten free cereal" is easier to comprehend over a conversational system. As compared to display devices, where images and detailed product information can be presented to users, short titles for products are necessary when interfacing with voice assistants. We propose a sequence-to-sequence approach using BERT to generate short, natural, spoken language titles from input web titles. Our extensive experiments on a real-world industry dataset and human evaluation of model outputs, demonstrate that BERT summarization outperforms comparable baseline models.