论文标题
达尔文的神经网络:基于AI的快速可扩展细胞和冠状病毒筛查的策略
Darwin's Neural Network: AI-based Strategies for Rapid and Scalable Cell and Coronavirus Screening
论文作者
论文摘要
机器感知,计算机视觉和生物医学工程的跨学科科学领域的最新进展是一系列机器学习算法的集合,具有非凡的能力来破译显微镜和纳米镜图像的内容。机器学习算法正在通过与生物成像方式结合使用来改变显微镜和纳米镜成像数据的解释和分析。这些进步使研究人员能够进行以前认为在计算上不可能的实时实验。在这里,我们适应了在计算机视觉和机器感知领域中,优胜胜地的生存理论,以引入多级实例分割深度学习的新框架,即达尔文的神经网络(DNN),以进行covid19的形态分析和分类,并在体内和多重哺乳动物的细胞类型中收集了MERS-COV。
Recent advances in the interdisciplinary scientific field of machine perception, computer vision, and biomedical engineering underpin a collection of machine learning algorithms with a remarkable ability to decipher the contents of microscope and nanoscope images. Machine learning algorithms are transforming the interpretation and analysis of microscope and nanoscope imaging data through use in conjunction with biological imaging modalities. These advances are enabling researchers to carry out real-time experiments that were previously thought to be computationally impossible. Here we adapt the theory of survival of the fittest in the field of computer vision and machine perception to introduce a new framework of multi-class instance segmentation deep learning, Darwin's Neural Network (DNN), to carry out morphometric analysis and classification of COVID19 and MERS-CoV collected in vivo and of multiple mammalian cell types in vitro.