论文标题

多部分优化的相关措施和全息图

Multipartite Optimized Correlation Measures and Holography

论文作者

DeWolfe, Oliver, Levin, Joshua, Smith, Graeme

论文摘要

我们探讨了在量子信息和全息图中量化多方相关性的方法。我们专注于优化的相关度量,在满足单调性条件的状态的所有可能净化中,熵的线性组合最小化。这些包含有关相关性的信息要比单独的纠缠熵更多的信息。我们提出了一种得出此类数量的程序,并构建了对三方的对称优化相关性措施的Menagerie。其中包括纯化纠缠,壁板纠缠的三方概括,以及最近引入的Q相关和R相关。一些相关性仅在产品状态上消失,因此量化了经典和量子相关性。其他人则在任何可分离状态下消失,仅捕获量子相关性。然后,我们使用由表面对应关系动机的程序来构建全息偶,以将相关度量作为散装表面的线性组合。表面的几何形状可以保留,部分打破或完全破坏相关度量的对称性。最佳纯化在某些点的位置编码,其位置是通过表面组合区域的约束固定的。这提供了在边界状态评估的信息理论量与其双重几何特性之间的新混凝土联系。

We explore ways to quantify multipartite correlations, in quantum information and in holography. We focus on optimized correlation measures, linear combinations of entropies minimized over all possible purifications of a state that satisfy monotonicity conditions. These contain far more information about correlations than entanglement entropy alone. We present a procedure to derive such quantities, and construct a menagerie of symmetric optimized correlation measures on three parties. These include tripartite generalizations of the entanglement of purification, the squashed entanglement, and the recently introduced Q-correlation and R-correlation. Some correlation measures vanish only on product states, and thus quantify both classical and quantum correlations; others vanish on any separable state, capturing quantum correlations alone. We then use a procedure motivated by the surface-state correspondence to construct holographic duals for the correlation measures as linear combinations of bulk surfaces. The geometry of the surfaces can preserve, partially break, or fully break the symmetry of the correlation measure. The optimal purification is encoded in the locations of certain points, whose locations are fixed by constraints on the areas of combinations of surfaces. This gives a new concrete connection between information theoretic quantities evaluated on a boundary state and detailed geometric properties of its dual.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源