论文标题

黑洞分布的固定点

A fixed point for black hole distributions

论文作者

Ghersi, José T. Gálvez, Stein, Leo C.

论文摘要

了解黑洞的分布对于天体物理学和量子重力至关重要。研究天体物理人口统计数据甚至被认为是限制量子真空形成黑洞的渠道。在这里,我们提出了一个Gedankenexperiment,以表明二进制合并的非线性特性(使用准确的替代模型模拟)在分布空间中产生吸引子。我们的结果表明,旋转幅度和分数质量损失的联合分布将变为固定点,并在几代人中融合。该固定点分布的特征不取决于初始分布的选择。由于黑洞合并不可逆,它会产生熵 - 可能是宇宙中最大的熵来源。固定点分布既不等温或等渗,最初的热力学状态从热力中发展出来。我们最终从最初的热和非热分布中评估了每次合并的特定熵产生速率,这些分布会收敛到常数。

Understanding distributions of black holes is crucial to both astrophysics and quantum gravity. Studying astrophysical population statistics has even been suggested as a channel to constrain black hole formation from the quantum vacuum. Here we propose a Gedankenexperiment to show that the non-linear properties of binary mergers (simulated with accurate surrogate models) generate an attractor in the space of distributions. Our results show that the joint distribution of spin magnitude and fractional mass loss evolves to a fixed point, converging in a few generations. The features of this fixed point distribution do not depend on the choice of initial distribution. Since a black hole merger is irreversible it produces entropy - possibly the largest source of entropy in the universe. The fixed-point distributions are neither isothermal nor isentropic, and initially thermodynamic states evolve away from thermality. We finally evaluate the specific entropy production rate per merger from initially thermal and non-thermal distributions, which converges to a constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源