论文标题
具有时空动力学的无序电势中的超电压玻色气体
Ultracold Bose gases in disorder potentials with spatiotemporal dynamics
论文作者
论文摘要
我们通过可调相关时间的动态障碍潜力中的超速骨气气体的耗散动力学研究。首先,我们测量暴露于动态电位的热云的加热速率,并提出了加热过程的模型,从而揭示了从玻色子的热,被困的玻色子云中耗散的微观起源。其次,对于Bose-Einstein凝结物,我们测量动态环境诱导的颗粒损耗率。根据相关时间,损失要么由残留热颗粒加热或超级流体中的激发产生主导,这是我们用速率模型证实的概念。我们的结果阐明了超流体和时间依赖性疾病之间的相互作用,并且在更一般的理由上建立了超低原子,作为研究时空噪声和时间依赖性疾病的平台。
We study experimentally the dissipative dynamics of ultracold bosonic gases in a dynamic disorder potential with tunable correlation time. First, we measure the heating rate of thermal clouds exposed to the dynamic potential and present a model of the heating process, revealing the microscopic origin of dissipation from a thermal, trapped cloud of bosons. Second, for Bose-Einstein condensates, we measure the particle loss rate induced by the dynamic environment. Depending on the correlation time, the losses are either dominated by heating of residual thermal particles or the creation of excitations in the superfluid, a notion we substantiate with a rate model. Our results illuminate the interplay between superfluidity and time-dependent disorder and on more general grounds establish ultracold atoms as a platform for studying spatiotemporal noise and time-dependent disorder.