论文标题

使用图神经网络的粗网格分子动力学

Coarse Graining Molecular Dynamics with Graph Neural Networks

论文作者

Husic, Brooke E., Charron, Nicholas E., Lemm, Dominik, Wang, Jiang, Pérez, Adrià, Majewski, Maciej, Krämer, Andreas, Chen, Yaoyi, Olsson, Simon, de Fabritiis, Gianni, Noé, Frank, Clementi, Cecilia

论文摘要

粗网可以研究较大系统和更长的时间尺度的分子动力学,而不是原子分辨率。但是,必须制​​定一个粗晶状模型,以使我们从中得出的结论与我们将从模型中得出的结论一致。已经证明,力匹配方案定义了在变化极限下的原子系统热力学一致的粗粒模型。 Wang等。 [ACS Cent。科学。 5,755(2019)]证明,这种变分极限的存在使使用监督的机器学习框架可以生成一个粗粒的力场,然后可以在粗粒的空间中用于模拟。然而,他们的框架需要手动输入分子特征,以便在这些特征上学习力场。在目前的贡献中,我们基于Wang等人的进步,并引入了一种混合体系结构,以用于机器学习粗粒的力场,该架构通过子网学习自己的功能,该子网在图神经网络体系结构上利用连续的过滤器卷积。我们证明,该框架成功地重现了小型生物分子系统的热力学。由于学到的分子表示本质上是可转移的,因此此处介绍的结构为开发机器学习的,粗粒的力场开发奠定了基础,这些阶段是在分子系统跨系统中转移的。

Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at atomic resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consistent with the conclusions we would draw from a model at a finer level of detail. It has been proven that a force matching scheme defines a thermodynamically consistent coarse-grained model for an atomistic system in the variational limit. Wang et al. [ACS Cent. Sci. 5, 755 (2019)] demonstrated that the existence of such a variational limit enables the use of a supervised machine learning framework to generate a coarse-grained force field, which can then be used for simulation in the coarse-grained space. Their framework, however, requires the manual input of molecular features upon which to machine learn the force field. In the present contribution, we build upon the advance of Wang et al.and introduce a hybrid architecture for the machine learning of coarse-grained force fields that learns their own features via a subnetwork that leverages continuous filter convolutions on a graph neural network architecture. We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems. Since the learned molecular representations are inherently transferable, the architecture presented here sets the stage for the development of machine-learned, coarse-grained force fields that are transferable across molecular systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源