论文标题

实时系统的混合神经形态对象跟踪和分类框架

A Hybrid Neuromorphic Object Tracking and Classification Framework for Real-time Systems

论文作者

Ussa, Andres, Rajen, Chockalingam Senthil, Singla, Deepak, Acharya, Jyotibdha, Chuanrong, Gideon Fu, Basu, Arindam, Ramesh, Bharath

论文摘要

需要在“边缘”上进行的深度学习推断是一种高度计算和内存密集的工作负载,使其对低功率,嵌入式平台(例如移动节点和远程安全应用程序)很有帮助。为了应对这一挑战,本文提出了一个实时的混合神经形态框架,用于使用基于事件的相机,用于对象跟踪和分类,该摄像机具有低功率消耗(5-14 MW)和高动态范围(120 dB)。尽管如此,与传统的逐场处理方法不同,这项工作使用混合框架和事件方法来获得高性能节省的能源。使用基于前景事件密度的基于框架的区域提案方法,使用明显的对象速度实现了硬件友好的对象跟踪方案,同时应对遮挡场景。对象轨道输入通过节能深网(EEDN)管道转换为Truenorth分类的尖峰。使用最初收集的数据集,我们在硬件轨道输出上训练Truenorth模型,而不是像通常使用的地面真相对象位置,并演示我们系统处理实用监视场景的能力。作为可选的范式,为了利用神经形态视觉传感器(NVS)的低潜伏期和异步性,我们还提出了一个连续的时间跟踪器,具有C ++实现,每个事件单独处理。因此,我们将提出的方法与基于事件的最新方法和基于框架的对象跟踪和分类的方法进行了广泛的比较,并证明了我们的神经形态方法的用例,用于实时和嵌入式应用程序而无需牺牲性能。最后,我们还展示了拟议系统在数小时的交通记录中评估时对标准RGB相机设置的功效。

Deep learning inference that needs to largely take place on the 'edge' is a highly computational and memory intensive workload, making it intractable for low-power, embedded platforms such as mobile nodes and remote security applications. To address this challenge, this paper proposes a real-time, hybrid neuromorphic framework for object tracking and classification using event-based cameras that possess properties such as low-power consumption (5-14 mW) and high dynamic range (120 dB). Nonetheless, unlike traditional approaches of using event-by-event processing, this work uses a mixed frame and event approach to get energy savings with high performance. Using a frame-based region proposal method based on the density of foreground events, a hardware-friendly object tracking scheme is implemented using the apparent object velocity while tackling occlusion scenarios. The object track input is converted back to spikes for TrueNorth classification via the energy-efficient deep network (EEDN) pipeline. Using originally collected datasets, we train the TrueNorth model on the hardware track outputs, instead of using ground truth object locations as commonly done, and demonstrate the ability of our system to handle practical surveillance scenarios. As an optional paradigm, to exploit the low latency and asynchronous nature of neuromorphic vision sensors (NVS), we also propose a continuous-time tracker with C++ implementation where each event is processed individually. Thereby, we extensively compare the proposed methodologies to state-of-the-art event-based and frame-based methods for object tracking and classification, and demonstrate the use case of our neuromorphic approach for real-time and embedded applications without sacrificing performance. Finally, we also showcase the efficacy of the proposed system to a standard RGB camera setup when evaluated over several hours of traffic recordings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源