论文标题

小儿胸部X射线的研究议程:童年时期的深度学习仍在吗?

A Research Agenda on Pediatric Chest X-Ray: Is Deep Learning Still in Childhood?

论文作者

Fonseca, Afonso U., Vieira, Gabriel S., Soares, Fabrízzio A. A. M. N., Bulcão-Neto, Renato F.

论文摘要

几个原因解释了胸部X射线在支持小儿患者中支持临床分析和早期疾病检测的重要作用,例如低成本,高分辨率,低辐射水平和高可用性。在过去的十年中,深度学习(DL)受到了计算机辅助诊断研究界的特别关注,表现优于许多技术的艺术状态,包括应用于儿科胸部X射线(PCXR)的技术。由于这种兴趣不断增加,还出现了许多高质量的二级研究,概述了机器学习和DL算法,尤其是对医学成像和PCXR。但是,这些二级研究遵循不同的准则,阻碍了其对已确定趋势和差距的第三方的繁殖或改善。本文提出了对PCXR图像中应用的DL技术的主要研究的“深度射线照相”。我们详细阐述了系统文献映射(SLM)协议,包括自动搜索从2010年1月1日至2020年5月20日发布的六个研究来源,以及一百个研究论文中使用的选择标准。结果,本文对26个相关研究进行了分类,并提供了研究议程,强调了局限性,差距和趋势,以进一步研究PCXR图像中DL使用情况。除了对该研究主题没有系统的映射研究(据作者的最佳知识)外,这项工作还组织了以可重复的方式查找和选择相关研究以及数据收集和综合的过程。

Several reasons explain the significant role that chest X-rays play on supporting clinical analysis and early disease detection in pediatric patients, such as low cost, high resolution, low radiation levels, and high availability. In the last decade, Deep Learning (DL) has been given special attention from the computer-aided diagnosis research community, outperforming the state of the art of many techniques, including those applied to pediatric chest X-rays (PCXR). Due to this increasing interest, much high-quality secondary research has also arisen, overviewing machine learning and DL algorithms on medical imaging and PCXR, in particular. However, these secondary studies follow different guidelines, hampering their reproduction or improvement by third-parties regarding the identified trends and gaps. This paper proposes a "deep radiography" of primary research on DL techniques applied in PCXR images. We elaborated on a Systematic Literature Mapping (SLM) protocol, including automatic search on six sources for studies published from January 1, 2010, to May 20, 2020, and selection criteria utilized on a hundred research papers. As a result, this paper categorizes twenty-six relevant studies and provides a research agenda highlighting limitations, gaps, and trends for further investigations on DL usage in PCXR images. Besides the fact that there is no systematic mapping study on this research topic, to the best of authors' knowledge, this work organizes the process of finding and selecting relevant studies and data gathering and synthesis in a reproducible way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源