论文标题

vicsek模型按时间间隙压缩:动态的可计算信息密度

Vicsek Model by Time-Interlaced Compression: a Dynamical Computable Information Density

论文作者

Cavagna, Andrea, Chaikin, Paul M., Levine, Dov, Martiniani, Stefano, Puglisi, Andrea, Viale, Massimiliano

论文摘要

在实际生物系统和理论模型中,集体行为通常都显示出各种秩序的丰富组合。因此,基于订单参数的标准概念的“相”的清晰和独特的定义可能会变得复杂,并且由于缺乏热力学平衡而变得更加棘手。近年来,基于压缩的熵在描述了平衡系统的不同阶段时被证明是有用的。在这里,我们研究了基于压缩的熵的性能,即集体运动模型中的可计算信息密度(CID)。我们的熵是通过粒子位置的粗糙粗粒定义的,其中速度在模型中的关键作用仅通过速度密度耦合间接进入。我们发现,这种熵是区分各种噪声状态的有效工具,包括速度的对齐相位和未对准相之间的交叉,尽管此熵未使用速度。此外,我们揭示了时间坐标的微妙作用,在对CID的先前研究中尚未探索:一种新的编码食谱,在同一地面上都保留了空间和时间的位置,以减少CID。在处理部分和/或损坏的数据时,这种改进尤其重要,因为在实际的生物学实验中通常是这种情况。

Collective behavior, both in real biological systems as well as in theoretical models, often displays a rich combination of different kinds of order. A clear-cut and unique definition of "phase" based on the standard concept of order parameter may therefore be complicated, and made even trickier by the lack of thermodynamic equilibrium. Compression-based entropies have been proved useful in recent years in describing the different phases of out-of-equilibrium systems. Here, we investigate the performance of a compression-based entropy, namely the Computable Information Density (CID), within the Vicsek model of collective motion. Our entropy is defined through a crude coarse-graining of the particle positions, in which the key role of velocities in the model only enters indirectly through the velocity-density coupling. We discover that such entropy is a valid tool in distinguishing the various noise regimes, including the crossover between an aligned and misaligned phase of the velocities, despite the fact that velocities are not used by this entropy. Furthermore, we unveil the subtle role of the time coordinate, unexplored in previous studies on the CID: a new encoding recipe, where space and time locality are both preserved on the same ground, is demonstrated to reduce the CID. Such an improvement is particularly significant when working with partial and/or corrupted data, as it is often the case in real biological experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源