论文标题
具有一般相互作用强度的两个社区嘈杂的库拉莫托模型:第二部分
Two-community noisy Kuramoto model with general interaction strengths: Part II
论文作者
论文摘要
我们将在两个相互作用社区的网络中考虑的嘈杂的库拉莫托模型的研究概括为在这个情况下,将社区内部和整个社区的相互作用强度一般不同。使用本系列第I部分中开发的自矛盾方程以及扰动参数的几何解释,我们能够识别相图中的所有解决方案边界。这使我们能够在四个维参数空间中完全对相图进行分类,并确定所有可能的分叉点。此外,我们分析了溶液边界的渐近行为。为了说明这些结果和模型的丰富行为,我们为参数空间的选定区域提供了相图。
We generalize the study of the noisy Kuramoto model, considered on a network of two interacting communities, to the case where the interaction strengths within and across communities are taken to be different in general. Using a geometric interpretation of the self-consistency equations developed in Part I of this series as well as perturbation arguments we are able to identify all solution boundaries in the phase diagram. This allows us to completely classify the phase diagram in the four dimensional parameter space and identify all possible bifurcation points. Furthermore, we analyze the asymptotic behavior of the solution boundaries. To illustrate these results and the rich behavior of the model we present phase diagrams for selected regions of the parameter space.